4.3 - 例: PHP / Redisを使用したゲストブックの例にロギングとメトリクスを追加する
このチュートリアルは、Redisを使用したPHPのゲストブック のチュートリアルを前提に作られています。Elasticが開発したログ、メトリクス、ネットワークデータを転送するオープンソースの軽量データシッパーであるBeats を、ゲストブックと同じKubernetesクラスターにデプロイします。BeatsはElasticsearchに対してデータの収集、分析、インデックス作成を行うため、結果の運用情報をKibana上で表示・分析できるようになります。この例は、以下のコンポーネントから構成されます。
目標
Redisを使用したPHPのゲストブックを起動する。
kube-state-metricsをインストールする。
KubernetesのSecretを作成する。
Beatsをデプロイする。
ログとメトリクスのダッシュボードを表示する。
始める前に
Kubernetesクラスターが必要、かつそのクラスターと通信するためにkubectlコマンドラインツールが設定されている必要があります。
このチュートリアルは、コントロールプレーンのホストとして動作していない少なくとも2つのノードを持つクラスターで実行することをおすすめします。
まだクラスターがない場合、minikube を使って作成するか、
以下のいずれかのKubernetesプレイグラウンドも使用できます:
バージョンを確認するには次のコマンドを実行してください:
kubectl version
.
追加で以下の作業が必要です。
Redisを使用したPHPのゲストブックを起動する
このチュートリアルは、Redisを使用したPHPのゲストブック のチュートリアルを前提に作られています。もしゲストブックアプリケーションが実行中なら、そのアプリケーションを監視できます。もしまだ実行中のアプリケーションがなければ、ゲストブックのデプロイの手順を行い、クリーンアップ のステップは実行しないでください。ゲストブックが起動したら、このページに戻ってきてください。
Cluster role bindingを追加する
クラスターレベルのrole binding を作成して、kube-state-metricsとBeatsをクラスターレベルで(kube-system内に)デプロイできるようにします。
kubectl create clusterrolebinding cluster-admin-binding \
--clusterrole= cluster-admin --user= <k8sのプロバイダーアカウントと紐付いたあなたのメールアドレス>
kube-state-metricsをインストールする
Kubernetesのkube-state-metrics は、Kubernetes APIサーバーをlistenして、オブジェクトの状態に関するメトリクスを生成する単純なサービスです。Metricbeatはこれらのメトリクスを報告します。kube-state-metricsをゲストブックが実行されているKubernetesクラスターに追加しましょう。
kube-state-metricsが起動しているか確認する
kubectl get pods --namespace= kube-system | grep kube-state
必要に応じてkube-state-metricsをインストールする
git clone https://github.com/kubernetes/kube-state-metrics.git kube-state-metrics
kubectl apply -f kube-state-metrics/examples/standard
kubectl get pods --namespace= kube-system | grep kube-state-metrics
kube-state-metricsがRunningかつreadyの状態になっていることを確認します。
kubectl get pods -n kube-system -l app.kubernetes.io/name= kube-state-metrics
結果は次のようになります。
NAME READY STATUS RESTARTS AGE
kube-state-metrics-89d656bf8-vdthm 1/1 Running 0 21s
GitHubリポジトリのElasticの例をクローンする
git clone https://github.com/elastic/examples.git
これ以降のコマンドはexamples/beats-k8s-send-anywhere
ディレクトリ内のファイルを参照するため、カレントディレクトリを変更します。
cd examples/beats-k8s-send-anywhere
KubernetesのSecretを作成する
KubernetesのSecret とは、パスワード、トークン、または鍵などの小さなサイズの機密データを含んだオブジェクトのことです。このような機密情報はPodのspecやイメージの中に置くことも不可能ではありませんが、Secretオブジェクトの中に置くことで、情報の使用方法を適切に制御したり、誤って公開してしまうリスクを減らすことができます。
備考: ここでは2種類の手順を紹介します。1つはセルフマネージド な(自分のサーバーで実行中またはElastic Helm Chartを使用して構築された)ElasticsearchおよびKibanaのためのもので、もう1つはマネージドサービス のElastic CloudのElasticsearch Serviceのための別の手順です。このチュートリアルで使う種類のElasticsearchおよびKibanaのシステムのためのSecretだけを作成してください。
セルフマネージド
Elastic Cloud上のElasticsearch Serviceに接続する場合は、マネージドサービス タブに切り替えてください。
クレデンシャルを設定する
セルフマネージドのElasticsearchとKibanaへ接続する場合、KubernetesのSecretを作成するために編集するべきファイルは4つあります(セルフマネージドとは、事実上Elastic Cloud以外で実行されているElasticsearch Serviceを指します)。ファイルは次の4つです。
ELASTICSEARCH_HOSTS
ELASTICSEARCH_PASSWORD
ELASTICSEARCH_USERNAME
KIBANA_HOST
これらのファイルにElasticsearchクラスターとKibanaホストの情報を設定してください。ここでは例をいくつか示します(こちらの設定 も参照してください)。
ELASTICSEARCH_HOSTS
Elastic Elasticsearch Helm Chartで作成したnodeGroupの場合。
[ "http://elasticsearch-master.default.svc.cluster.local:9200" ]
Mac上で単一のElasticsearchノードが実行されており、BeatsがDocker for Macで実行中の場合。
[ "http://host.docker.internal:9200" ]
2ノードのElasticsearchがVM上または物理ハードウェア上で実行中の場合。
[ "http://host1.example.com:9200" , "http://host2.example.com:9200" ]
ELASTICSEARCH_HOSTS
を編集します。
ELASTICSEARCH_PASSWORD
パスワードだけを書きます。空白、クォート、<>などの文字は書かないでください。
<yoursecretpassword>
ELASTICSEARCH_PASSWORD
を編集します。
vi ELASTICSEARCH_PASSWORD
ELASTICSEARCH_USERNAME
ユーザー名だけを書きます。空白、クォート、<>などの文字は書かないでください。
<Elasticsearchに追加するユーザー名>
ELASTICSEARCH_USERNAME
を編集します。
vi ELASTICSEARCH_USERNAME
KIBANA_HOST
Elastic Kibana Helm Chartで作成したKibanaインスタンスが実行中の場合。default
というサブドメインは、default Namespaceを指します。もしHelm Chartを別のNamespaceにデプロイした場合、サブドメインは異なります。
"kibana-kibana.default.svc.cluster.local:5601"
Mac上でKibanaインスタンスが実行中で、BeatsがDocker for Macで実行中の場合。
"host.docker.internal:5601"
2つのElasticsearchノードが、VMまたは物理ハードウェア上で実行中の場合。
KIBANA_HOST
を編集します。
KubernetesのSecretを作成する
次のコマンドを実行すると、KubernetesのシステムレベルのNamespace(kube-system)に、たった今編集したファイルを元にSecretが作成されます。
kubectl create secret generic dynamic-logging \
--from-file=./ELASTICSEARCH_HOSTS \
--from-file=./ELASTICSEARCH_PASSWORD \
--from-file=./ELASTICSEARCH_USERNAME \
--from-file=./KIBANA_HOST \
--namespace=kube-system
マネージドサービス
このタブは、Elastic Cloud上のElasticsearch Serviceの場合のみ必要です。もしセルフマネージドのElasticsearchとKibanaのDeployment向けにSecretをすでに作成した場合、Beatsをデプロイする に進んでください。
クレデンシャルを設定する
Elastic Cloud上のマネージドElasticsearch Serviceに接続する場合、KubernetesのSecretを作成するために編集する必要があるのは、次の2つのファイルです。
ELASTIC_CLOUD_AUTH
ELASTIC_CLOUD_ID
Deploymentを作成するときに、Elasticsearch Serviceのコンソールから提供された情報を設定してください。以下に例を示します。
ELASTIC_CLOUD_ID
devk8s:ABC123def456ghi789jkl123mno456pqr789stu123vwx456yza789bcd012efg345hijj678klm901nop345zEwOTJjMTc5YWQ0YzQ5OThlN2U5MjAwYTg4NTIzZQ==
ELASTIC_CLOUD_AUTH
ユーザー名、コロン(:
)、パスワードだけを書きます。空白やクォートは書かないでください。
elastic:VFxJJf9Tjwer90wnfTghsn8w
必要なファイルを編集する
vi ELASTIC_CLOUD_ID
vi ELASTIC_CLOUD_AUTH
KubernetesのSecretを作成する
次のコマンドを実行すると、KubernetesのシステムレベルのNamespace(kube-system)に、たった今編集したファイルを元にSecretが作成されます。
kubectl create secret generic dynamic-logging \
--from-file=./ELASTIC_CLOUD_ID \
--from-file=./ELASTIC_CLOUD_AUTH \
--namespace=kube-system
Beatsをデプロイする
マニフェストファイルはBeatごとに提供されます。これらのマニフェストファイルは、上で作成したSecretを使用して、BeatsをElasticsearchおよびKibanaサーバーに接続するように設定します。
Filebeatについて
Filebeatは、Kubernetesのノードと、ノード上で実行している各Pod内のコンテナから、ログを収集します。FilebeatはDaemonSet としてデプロイされます。FilebeatはKubernetesクラスター上で実行されているアプリケーションを自動検出することもできます。起動時にFilebeatは既存のコンテナをスキャンし、それらに対して適切な設定を立ち上げ、その後、新しいstart/stopイベントを監視します。
Filebeatが、ゲストブックアプリケーションでデプロイしたRedisコンテナからRedisのログを特定・解析できるように自動検出を設定する例を示します。この設定はfilebeat-kubernetes.yaml
ファイル内にあります。
- condition.contains :
kubernetes.labels.app : redis
config :
- module : redis
log :
input :
type : docker
containers.ids :
- ${data.kubernetes.container.id}
slowlog :
enabled : true
var.hosts : ["${data.host}:${data.port}" ]
この設定により、Filebeatは、app
ラベルにredis
という文字列が含まれるコンテナを検出したときにredis
Filebeatモジュールを適用するようになります。redisモジュールには、input typeとしてdockerを使用することで(このRedisコンテナの標準出力のストリームと関連付けられた、Kubernetesノード上のファイルを読み取ることで)コンテナからlog
ストリームを収集する機能があります。さらに、このモジュールには、コンテナのメタデータとして提供された適切なPodのホストとポートと接続することにより、Redisのslowlog
エントリーを収集する機能もあります。
Filebeatをデプロイする
kubectl create -f filebeat-kubernetes.yaml
検証する
kubectl get pods -n kube-system -l k8s-app= filebeat-dynamic
Metricbeatについて
Metricbeatの自動検出はFilebeatと同じ方法で設定します。以下にMetricbeatにおけるRedisコンテナの自動検出の設定を示します。この設定はmetricbeat-kubernetes.yaml
ファイル内にあります。
- condition.equals :
kubernetes.labels.tier : backend
config :
- module : redis
metricsets : ["info" , "keyspace" ]
period : 10s
# Redis hosts
hosts : ["${data.host}:${data.port}" ]
この設定により、Metricbeatは、tier
ラベルにbackend
という文字列が含まれるコンテナを検出したときにredis
Metricbeatモジュールを適用するようになります。redisモジュールには、コンテナのメタデータとして提供された適切なPodのホストとポートと接続することにより、コンテナからinfo
およびkeyspace
メトリクスを収集する機能があります。
Metricbeatをデプロイする
kubectl create -f metricbeat-kubernetes.yaml
検証する
kubectl get pods -n kube-system -l k8s-app= metricbeat
Packetbeatについて
Packetbeatの設定は、FilebeatやMetricbeatとは異なります。コンテナのラベルに対するパターンマッチを指定する代わりに、関連するプロトコルとポート番号に基づいた設定を書きます。以下に示すのは、ポート番号のサブセットです。
備考: サービスを標準ポート以外で実行している場合、そのポート番号をfilebeat.yaml
内の適切なtypeに追加し、PacketbeatのDaemonSetを削除・再作成してください。
packetbeat.interfaces.device : any
packetbeat.protocols :
- type : dns
ports : [53 ]
include_authorities : true
include_additionals : true
- type : http
ports : [80 , 8000 , 8080 , 9200 ]
- type : mysql
ports : [3306 ]
- type : redis
ports : [6379 ]
packetbeat.flows :
timeout : 30s
period : 10s
Packetbeatをデプロイする
kubectl create -f packetbeat-kubernetes.yaml
検証する
kubectl get pods -n kube-system -l k8s-app= packetbeat-dynamic
Kibanaで表示する
ブラウザでKibanaを開き、Dashboard アプリケーションを開きます。検索バーでKubernetesと入力して、KubernetesのためのMetricbeatダッシュボードを開きます。このダッシュボードでは、NodeやDeploymentなどの状態のレポートが表示されます。
DashboardページでPacketbeatと検索し、Packetbeat overviewを表示します。
同様に、ApacheおよびRedisのためのDashboardを表示します。それぞれに対してログとメトリクスのDashboardが表示されます。Apache Metricbeat dashboardには何も表示されていないはずです。Apache Filebeat dashboardを表示して、ページの最下部までスクロールしてApacheのエラーログを確認します。ログを読むと、Apacheのメトリクスが表示されない理由が分かります。
Metricbeatを有効にしてApacheのメトリクスを取得するには、mod-status設定ファイルを含んだConfigMapを追加してゲストブックを再デプロイすることで、server-statusを有効にします。
Deploymentをスケールして新しいPodが監視されるのを確認する
存在するDeploymentを一覧します。
出力は次のようになります。
NAME READY UP-TO-DATE AVAILABLE AGE
frontend 3/3 3 3 3h27m
redis-master 1/1 1 1 3h27m
redis-slave 2/2 2 2 3h27m
frontendのPodを2つにスケールダウンします。
kubectl scale --replicas= 2 deployment/frontend
出力は次のようになります。
deployment.extensions/frontend scaled
frontendのPodを再び3つにスケールアップします。
kubectl scale --replicas= 3 deployment/frontend
Kibana上で変更を表示する
スクリーンショットを確認し、指定されたフィルターを追加して、ビューにカラムを追加します。赤い枠の右下を見ると、ScalingReplicaSetというエントリーが確認できます。そこからリストを上に見てゆくと、イメージのpull、ボリュームのマウント、Podのスタートなどのイベントが確認できます。
クリーンアップ
DeploymentとServiceを削除すると、実行中のすべてのPodも削除されます。ラベルを使って複数のリソースを1つのコマンドで削除します。
次のコマンドを実行して、すべてのPod、Deployment、Serviceを削除します。
kubectl delete deployment -l app = redis
kubectl delete service -l app = redis
kubectl delete deployment -l app = guestbook
kubectl delete service -l app = guestbook
kubectl delete -f filebeat-kubernetes.yaml
kubectl delete -f metricbeat-kubernetes.yaml
kubectl delete -f packetbeat-kubernetes.yaml
kubectl delete secret dynamic-logging -n kube-system
Podの一覧を問い合わせて、実行中のPodがなくなったことを確認します。
結果は次のようになるはずです。
No resources found.
次の項目
5.1 - StatefulSetの基本
このチュートリアルでは、StatefulSet を使用したアプリケーションを管理するための基本を説明します。StatefulSetのPodを作成、削除、スケール、そして更新する方法について紹介します。
始める前に
このチュートリアルを始める前に、以下のKubernetesの概念について理解しておく必要があります。
備考: このチュートリアルでは、クラスターがPersistentVolumeの動的なプロビジョニングが行われるように設定されていることを前提としています。クラスターがそのように設定されていない場合、チュートリアルを始める前に1GiBのボリュームを2つ手動でプロビジョニングする必要があります。
目標
StatefulSetはステートフルアプリケーションや分散システムで使用するために存在します。しかし、Kubernetes上のステートフルアプリケーションや分散システムは、広範で複雑なトピックです。StatefulSetの基本的な機能を示すという目的のため、また、ステートフルアプリケーションを分散システムと混同しないようにするために、ここでは、Statefulsetを使用する単純なウェブアプリケーションのデプロイを行います。
このチュートリアルを終えると、以下のことが理解できるようになります。
StatefulSetの作成方法
StatefulSetがどのようにPodを管理するのか
StatefulSetの削除方法
StatefulSetのスケール方法
StatefulSetが管理するPodの更新方法
StatefulSetを作成する
はじめに、以下の例を使ってStatefulSetを作成しましょう。これは、コンセプトのStatefulSet のページで使ったものと同じような例です。nginx
というheadless Service を作成し、web
というStatefulSet内のPodのIPアドレスを公開します。
apiVersion : v1
kind : Service
metadata :
name : nginx
labels :
app : nginx
spec :
ports :
- port : 80
name : web
clusterIP : None
selector :
app : nginx
---
apiVersion : apps/v1
kind : StatefulSet
metadata :
name : web
spec :
serviceName : "nginx"
replicas : 2
selector :
matchLabels :
app : nginx
template :
metadata :
labels :
app : nginx
spec :
containers :
- name : nginx
image : k8s.gcr.io/nginx-slim:0.8
ports :
- containerPort : 80
name : web
volumeMounts :
- name : www
mountPath : /usr/share/nginx/html
volumeClaimTemplates :
- metadata :
name : www
spec :
accessModes : [ "ReadWriteOnce" ]
resources :
requests :
storage : 1Gi
上の例をダウンロードして、web.yaml
という名前で保存します。
ここでは、ターミナルウィンドウを2つ使う必要があります。1つ目のターミナルでは、kubectl get
を使って、StatefulSetのPodの作成を監視します。
kubectl get pods -w -l app = nginx
2つ目のターミナルでは、kubectl apply
を使って、web.yaml
に定義されたheadless ServiceとStatefulSetを作成します。
kubectl apply -f web.yaml
service/nginx created
statefulset.apps/web created
上のコマンドを実行すると、2つのPodが作成され、それぞれのPodでNGINX ウェブサーバーが実行されます。nginx
Serviceを取得してみましょう。
kubectl get service nginx
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
nginx ClusterIP None <none> 80/TCP 12s
そして、web
StatefulSetを取得して、2つのリソースの作成が成功したことも確認します。
kubectl get statefulset web
NAME DESIRED CURRENT AGE
web 2 1 20s
順序付きPodの作成
n 個のレプリカを持つStatefulSetは、Podをデプロイするとき、1つずつ順番に作成し、 {0..n-1} という順序付けを行います。1つ目のターミナルでkubectl get
コマンドの出力を確認しましょう。最終的に、以下の例のような出力が表示されるはずです。
kubectl get pods -w -l app = nginx
NAME READY STATUS RESTARTS AGE
web-0 0/1 Pending 0 0s
web-0 0/1 Pending 0 0s
web-0 0/1 ContainerCreating 0 0s
web-0 1/1 Running 0 19s
web-1 0/1 Pending 0 0s
web-1 0/1 Pending 0 0s
web-1 0/1 ContainerCreating 0 0s
web-1 1/1 Running 0 18s
web-0
Podが Running (Pod Phase を参照)かつ Ready (Pod Conditions のtype
を参照)の状態になるまでは、web-1
Podが起動していないことに注目してください。
StatefulSet内のPod
StatefulSet内のPodは、ユニークな順序インデックスと安定したネットワーク識別子を持ちます。
Podの順序インデックスを確かめる
StatefulSetのPodを取得します。
kubectl get pods -l app = nginx
NAME READY STATUS RESTARTS AGE
web-0 1/1 Running 0 1m
web-1 1/1 Running 0 1m
StatefulSet のコンセプトで説明したように、StatefulSet内のPodは安定したユニークな識別子を持ちます。この識別子は、StatefulSetコントローラー によって各Podに割り当てられる、ユニークな順序インデックスに基づいて付けられます。Podの名前は、<statefulsetの名前>-<順序インデックス>
という形式です。web
StatefulSetは2つのレプリカを持つため、web-0
とweb-1
という2つのPodを作成します。
安定したネットワーク識別子の使用
各Podは、順序インデックスに基づいた安定したホスト名を持ちます。kubectl exec
を使用して、各Pod内でhostname
コマンドを実行してみましょう。
for i in 0 1; do kubectl exec "web- $i " -- sh -c 'hostname' ; done
web-0
web-1
kubectl run
を使用して、dnsutils
パッケージのnslookup
コマンドを提供するコンテナを実行します。Podのホスト名に対してnslookup
を実行すると、クラスター内のDNSアドレスが確認できます。
kubectl run -i --tty --image busybox:1.28 dns-test --restart= Never --rm
これにより、新しいシェルが起動します。新しいシェルで、次のコマンドを実行します。
# このコマンドは、dns-testコンテナのシェルで実行してください
nslookup web-0.nginx
出力は次のようになります。
Server: 10.0.0.10
Address 1: 10.0.0.10 kube-dns.kube-system.svc.cluster.local
Name: web-0.nginx
Address 1: 10.244.1.6
nslookup web-1.nginx
Server: 10.0.0.10
Address 1: 10.0.0.10 kube-dns.kube-system.svc.cluster.local
Name: web-1.nginx
Address 1: 10.244.2.6
(コンテナのシェルを終了するために、exit
コマンドを実行してください。)
headless serviceのCNAMEは、SRVレコードを指しています(1つのレコードがRunningかつReadyのPodに対応します)。SRVレコードは、PodのIPアドレスを含むAレコードを指します。
1つ目のターミナルで、StatefulSetのPodを監視します。
kubectl get pod -w -l app = nginx
2つ目のターミナルで、kubectl delete
を使用して、StatefulSetのすべてのPodを削除します。
kubectl delete pod -l app = nginx
pod "web-0" deleted
pod "web-1" deleted
StatefulSetがPodを再起動して、2つのPodがRunningかつReadyの状態に移行するのを待ちます。
kubectl get pod -w -l app = nginx
NAME READY STATUS RESTARTS AGE
web-0 0/1 ContainerCreating 0 0s
NAME READY STATUS RESTARTS AGE
web-0 1/1 Running 0 2s
web-1 0/1 Pending 0 0s
web-1 0/1 Pending 0 0s
web-1 0/1 ContainerCreating 0 0s
web-1 1/1 Running 0 34s
kubectl exec
とkubectl run
コマンドを使用して、Podのホスト名とクラスター内DNSエントリーを確認します。まず、Podのホスト名を見てみましょう。
for i in 0 1; do kubectl exec web-$i -- sh -c 'hostname' ; done
web-0
web-1
その後、次のコマンドを実行します。
kubectl run -i --tty --image busybox:1.28 dns-test --restart=Never --rm /bin/sh
これにより、新しいシェルが起動します。新しいシェルで、次のコマンドを実行します。
# このコマンドは、dns-testコンテナのシェルで実行してください
nslookup web-0.nginx
出力は次のようになります。
Server: 10.0.0.10
Address 1: 10.0.0.10 kube-dns.kube-system.svc.cluster.local
Name: web-0.nginx
Address 1: 10.244.1.7
nslookup web-1.nginx
Server: 10.0.0.10
Address 1: 10.0.0.10 kube-dns.kube-system.svc.cluster.local
Name: web-1.nginx
Address 1: 10.244.2.8
(コンテナのシェルを終了するために、exit
コマンドを実行してください。)
Podの順序インデックス、ホスト名、SRVレコード、そしてAレコード名は変化していませんが、Podに紐付けられたIPアドレスは変化する可能性があります。このチュートリアルで使用しているクラスターでは、IPアドレスは変わりました。このようなことがあるため、他のアプリケーションがStatefulSet内のPodに接続するときには、IPアドレスで指定しないことが重要です。
StatefulSetの有効なメンバーを探して接続する必要がある場合は、headless ServiceのCNAME(nginx.default.svc.cluster.local
)をクエリしなければなりません。CNAMEに紐付けられたSRVレコードには、StatefulSet内のRunnningかつReadyなPodだけが含まれます。
アプリケーションがlivenessとreadinessをテストするコネクションのロジックをすでに実装している場合、PodのSRVレコード(web-0.nginx.default.svc.cluster.local
、web-1.nginx.default.svc.cluster.local
)をPodが安定しているものとして使用できます。PodがRunning and Readyな状態に移行すれば、アプリケーションはPodのアドレスを発見できるようになります。
安定したストレージへの書き込み
web-0
およびweb-1
のためのPersistentVolumeClaimを取得しましょう。
kubectl get pvc -l app = nginx
出力は次のようになります。
NAME STATUS VOLUME CAPACITY ACCESSMODES AGE
www-web-0 Bound pvc-15c268c7-b507-11e6-932f-42010a800002 1Gi RWO 48s
www-web-1 Bound pvc-15c79307-b507-11e6-932f-42010a800002 1Gi RWO 48s
StatefulSetコントローラーは、2つのPersistentVolume にバインドされた2つのPersistentVolumeClaim を作成しています。
このチュートリアルで使用しているクラスターでは、PersistentVolumeの動的なプロビジョニングが設定されているため、PersistentVolumeが自動的に作成されてバインドされています。
デフォルトでは、NGINXウェブサーバーは/usr/share/nginx/html/index.html
に置かれたindexファイルを配信します。StatefulSetのspec
内のvolumeMounts
フィールドによって、/usr/share/nginx/html
ディレクトリがPersistentVolume上にあることが保証されます。
Podのホスト名をindex.html
ファイルに書き込むことで、NGINXウェブサーバーがホスト名を配信することを検証しましょう。
for i in 0 1; do kubectl exec "web- $i " -- sh -c 'echo "$(hostname)" > /usr/share/nginx/html/index.html' ; done
for i in 0 1; do kubectl exec -i -t "web- $i " -- curl http://localhost/; done
web-0
web-1
備考: 上記のcurlコマンドに対して代わりに403 Forbidden というレスポンスが返ってくる場合、volumeMounts
でマウントしたディレクトリのパーミッションを修正する必要があります(これは、hostPathボリュームを使用したときに起こるバグ が原因です)。この問題に対処するには、上のcurl
コマンドを再実行する前に、次のコマンドを実行します。
for i in 0 1; do kubectl exec web-$i -- chmod 755 /usr/share/nginx/html; done
1つ目のターミナルで、StatefulSetのPodを監視します。
kubectl get pod -w -l app = nginx
2つ目のターミナルで、StatefulSetのすべてのPodを削除します。
kubectl delete pod -l app = nginx
pod "web-0" deleted
pod "web-1" deleted
1つ目のターミナルでkubectl get
コマンドの出力を確認して、すべてのPodがRunningかつReadyの状態に変わるまで待ちます。
kubectl get pod -w -l app = nginx
NAME READY STATUS RESTARTS AGE
web-0 0/1 ContainerCreating 0 0s
NAME READY STATUS RESTARTS AGE
web-0 1/1 Running 0 2s
web-1 0/1 Pending 0 0s
web-1 0/1 Pending 0 0s
web-1 0/1 ContainerCreating 0 0s
web-1 1/1 Running 0 34s
ウェブサーバーがホスト名を配信し続けていることを確認します。
for i in 0 1; do kubectl exec -i -t "web-$i" -- curl http://localhost/; done
web-0
web-1
もしweb-0
およびweb-1
が再スケジュールされたとしても、Podは同じホスト名を配信し続けます。これは、PodのPersistentVolumeClaimに紐付けられたPersistentVolumeが、PodのvolumeMounts
に再マウントされるためです。web-0
とweb-1
がどんなノードにスケジュールされたとしても、PodのPersistentVolumeは適切なマウントポイントにマウントされます。
StatefulSetをスケールする
StatefulSetのスケールとは、レプリカ数を増減することを意味します。これは、replicas
フィールドを更新することによって実現できます。StatefulSetのスケールには、kubectl scale
と
kubectl patch
のどちらも使用できます。
スケールアップ
1つ目のターミナルで、StatefulSet内のPodを監視します。
kubectl get pods -w -l app = nginx
2つ目のターミナルで、kubectl scale
を使って、レプリカ数を5にスケールします。
kubectl scale sts web --replicas= 5
statefulset.apps/web scaled
1つ目のターミナルのkubectl get
コマンドの出力を確認して、3つの追加のPodがRunningかつReadyの状態に変わるまで待ちます。
kubectl get pods -w -l app = nginx
NAME READY STATUS RESTARTS AGE
web-0 1/1 Running 0 2h
web-1 1/1 Running 0 2h
NAME READY STATUS RESTARTS AGE
web-2 0/1 Pending 0 0s
web-2 0/1 Pending 0 0s
web-2 0/1 ContainerCreating 0 0s
web-2 1/1 Running 0 19s
web-3 0/1 Pending 0 0s
web-3 0/1 Pending 0 0s
web-3 0/1 ContainerCreating 0 0s
web-3 1/1 Running 0 18s
web-4 0/1 Pending 0 0s
web-4 0/1 Pending 0 0s
web-4 0/1 ContainerCreating 0 0s
web-4 1/1 Running 0 19s
StatefulSetコントローラーはレプリカ数をスケールします。
StatefulSetを作成する で説明したように、StatefulSetコントローラーは各Podを順序インデックスに従って1つずつ作成し、次のPodを起動する前に、1つ前のPodがRunningかつReadyの状態になるまで待ちます。
スケールダウン
1つ目のターミナルで、StatefulSetのPodを監視します。
kubectl get pods -w -l app = nginx
2つ目のターミナルで、kubectl patch
コマンドを使用して、StatefulSetを3つのレプリカにスケールダウンします。
kubectl patch sts web -p '{"spec":{"replicas":3}}'
statefulset.apps/web patched
web-4
およびweb-3
がTerminatingの状態になるまで待ちます。
kubectl get pods -w -l app = nginx
NAME READY STATUS RESTARTS AGE
web-0 1/1 Running 0 3h
web-1 1/1 Running 0 3h
web-2 1/1 Running 0 55s
web-3 1/1 Running 0 36s
web-4 0/1 ContainerCreating 0 18s
NAME READY STATUS RESTARTS AGE
web-4 1/1 Running 0 19s
web-4 1/1 Terminating 0 24s
web-4 1/1 Terminating 0 24s
web-3 1/1 Terminating 0 42s
web-3 1/1 Terminating 0 42s
順序付きPodを削除する
コントローラーは、順序インデックスの逆順に1度に1つのPodを削除し、次のPodを削除する前には、各Podが完全にシャットダウンするまで待機しています。
StatefulSetのPersistentVolumeClaimを取得しましょう。
kubectl get pvc -l app = nginx
NAME STATUS VOLUME CAPACITY ACCESSMODES AGE
www-web-0 Bound pvc-15c268c7-b507-11e6-932f-42010a800002 1Gi RWO 13h
www-web-1 Bound pvc-15c79307-b507-11e6-932f-42010a800002 1Gi RWO 13h
www-web-2 Bound pvc-e1125b27-b508-11e6-932f-42010a800002 1Gi RWO 13h
www-web-3 Bound pvc-e1176df6-b508-11e6-932f-42010a800002 1Gi RWO 13h
www-web-4 Bound pvc-e11bb5f8-b508-11e6-932f-42010a800002 1Gi RWO 13h
まだ、5つのPersistentVolumeClaimと5つのPersistentVolumeが残っています。安定したストレージへの書き込み を読むと、StatefulSetのPodが削除されても、StatefulSetのPodにマウントされたPersistentVolumeは削除されないと書かれています。このことは、StatefulSetのスケールダウンによってPodが削除された場合にも当てはまります。
StatefulSetsを更新する
Kubernetes 1.7以降では、StatefulSetコントローラーは自動アップデートをサポートしています。使われる戦略は、StatefulSet APIオブジェクトのspec.updateStrategy
フィールドによって決まります。この機能はコンテナイメージのアップグレード、リソースのrequestsやlimits、ラベル、StatefulSet内のPodのアノテーションの更新時に利用できます。有効なアップデートの戦略は、RollingUpdate
とOnDelete
の2種類です。
RollingUpdate
は、StatefulSetのデフォルトのアップデート戦略です。
RollingUpdate
RollingUpdate
アップデート戦略は、StatefulSetの保証を尊重しながら、順序インデックスの逆順にStatefulSet内のすべてのPodをアップデートします。
web
StatefulSetにpatchを当てて、RollingUpdate
アップデート戦略を適用しましょう。
kubectl patch statefulset web -p '{"spec":{"updateStrategy":{"type":"RollingUpdate"}}}'
statefulset.apps/web patched
1つ目のターミナルで、web
StatefulSetに再度patchを当てて、コンテナイメージを変更します。
kubectl patch statefulset web --type= 'json' -p= '[{"op": "replace", "path": "/spec/template/spec/containers/0/image", "value":"gcr.io/google_containers/nginx-slim:0.8"}]'
statefulset.apps/web patched
2つ目のターミナルで、StatefulSet内のPodを監視します。
kubectl get pod -l app = nginx -w
出力は次のようになります。
NAME READY STATUS RESTARTS AGE
web-0 1/1 Running 0 7m
web-1 1/1 Running 0 7m
web-2 1/1 Running 0 8m
web-2 1/1 Terminating 0 8m
web-2 1/1 Terminating 0 8m
web-2 0/1 Terminating 0 8m
web-2 0/1 Terminating 0 8m
web-2 0/1 Terminating 0 8m
web-2 0/1 Terminating 0 8m
web-2 0/1 Pending 0 0s
web-2 0/1 Pending 0 0s
web-2 0/1 ContainerCreating 0 0s
web-2 1/1 Running 0 19s
web-1 1/1 Terminating 0 8m
web-1 0/1 Terminating 0 8m
web-1 0/1 Terminating 0 8m
web-1 0/1 Terminating 0 8m
web-1 0/1 Pending 0 0s
web-1 0/1 Pending 0 0s
web-1 0/1 ContainerCreating 0 0s
web-1 1/1 Running 0 6s
web-0 1/1 Terminating 0 7m
web-0 1/1 Terminating 0 7m
web-0 0/1 Terminating 0 7m
web-0 0/1 Terminating 0 7m
web-0 0/1 Terminating 0 7m
web-0 0/1 Terminating 0 7m
web-0 0/1 Pending 0 0s
web-0 0/1 Pending 0 0s
web-0 0/1 ContainerCreating 0 0s
web-0 1/1 Running 0 10s
StatefulSet内のPodは、順序インデックスの逆順に更新されました。StatefulSetコントローラーは各Podを終了させ、次のPodを更新する前に、新しいPodがRunningかつReadyの状態に変わるまで待機します。ここで、StatefulSetコントローラーは順序インデックスの前のPodがRunningかつReadyの状態になるまで次のPodの更新を始めず、現在の状態へのアップデートに失敗したPodがあった場合、そのPodをリストアすることに注意してください。
すでにアップデートを受け取ったPodは、アップデートされたバージョンにリストアされます。まだアップデートを受け取っていないPodは、前のバージョンにリストアされます。このような方法により、もし途中で失敗が起こっても、コントローラはアプリケーションが健全な状態を保ち続けられるようにし、更新が一貫したものになるようにします。
Podを取得して、コンテナイメージを確認してみましょう。
for p in 0 1 2; do kubectl get pod "web- $p " --template '{{range $i, $c := .spec.containers}}{{$c.image}}{{end}}' ; echo; done
k8s.gcr.io/nginx-slim:0.8
k8s.gcr.io/nginx-slim:0.8
k8s.gcr.io/nginx-slim:0.8
現在、StatefulSet内のすべてのPodは、前のコンテナイメージを実行しています。
備考: kubectl rollout status sts/<name>
を使って、StatefulSetへのローリングアップデートの状態を確認することもできます。
ステージングアップデート
RollingUpdate
アップデート戦略にpartition
パラメーターを使用すると、StatefulSetへのアップデートをステージングすることができます。ステージングアップデートを利用すれば、StatefulSet内のすべてのPodを現在のバージョンにしたまま、StatefulSetの.spec.template
を変更することが可能になります。
web
StatefulSetにpatchを当てて、updateStrategy
フィールドにpartitionを追加しましょう。
kubectl patch statefulset web -p '{"spec":{"updateStrategy":{"type":"RollingUpdate","rollingUpdate":{"partition":3}}}}'
statefulset.apps/web patched
StatefulSetに再度patchを当てて、コンテナイメージを変更します。
kubectl patch statefulset web --type= 'json' -p= '[{"op": "replace", "path": "/spec/template/spec/containers/0/image", "value":"k8s.gcr.io/nginx-slim:0.7"}]'
statefulset.apps/web patched
StatefulSet内のPodを削除します。
pod "web-2" deleted
PodがRunningかつReadyになるまで待ちます。
kubectl get pod -l app = nginx -w
NAME READY STATUS RESTARTS AGE
web-0 1/1 Running 0 4m
web-1 1/1 Running 0 4m
web-2 0/1 ContainerCreating 0 11s
web-2 1/1 Running 0 18s
Podのコンテナイメージを取得します。
kubectl get pod web-2 --template '{{range $i, $c := .spec.containers}}{{$c.image}}{{end}}'
k8s.gcr.io/nginx-slim:0.8
アップデート戦略がRollingUpdate
であっても、StatefulSetが元のコンテナを持つPodをリストアしたことがわかります。これは、Podの順序インデックスがupdateStrategy
で指定したpartition
より小さいためです。
カナリア版をロールアウトする
ステージングアップデート のときに指定したpartition
を小さくすることで、変更をテストするためのカナリア版をロールアウトできます。
StatefulSetにpatchを当てて、partitionを小さくします。
kubectl patch statefulset web -p '{"spec":{"updateStrategy":{"type":"RollingUpdate","rollingUpdate":{"partition":2}}}}'
statefulset.apps/web patched
web-2
がRunningかつReadyの状態になるまで待ちます。
kubectl get pod -l app = nginx -w
NAME READY STATUS RESTARTS AGE
web-0 1/1 Running 0 4m
web-1 1/1 Running 0 4m
web-2 0/1 ContainerCreating 0 11s
web-2 1/1 Running 0 18s
Podのコンテナを取得します。
kubectl get pod web-2 --template '{{range $i, $c := .spec.containers}}{{$c.image}}{{end}}'
k8s.gcr.io/nginx-slim:0.7
partition
を変更すると、StatefulSetコントローラーはPodを自動的に更新します。Podの順序インデックスがpartition
以上の値であるためです。
web-1
Podを削除します。
pod "web-1" deleted
web-1
PodがRunningかつReadyになるまで待ちます。
kubectl get pod -l app = nginx -w
出力は次のようになります。
NAME READY STATUS RESTARTS AGE
web-0 1/1 Running 0 6m
web-1 0/1 Terminating 0 6m
web-2 1/1 Running 0 2m
web-1 0/1 Terminating 0 6m
web-1 0/1 Terminating 0 6m
web-1 0/1 Terminating 0 6m
web-1 0/1 Pending 0 0s
web-1 0/1 Pending 0 0s
web-1 0/1 ContainerCreating 0 0s
web-1 1/1 Running 0 18s
web-1
Podのコンテナイメージを取得します。
kubectl get pod web-1 --template '{{range $i, $c := .spec.containers}}{{$c.image}}{{end}}'
k8s.gcr.io/nginx-slim:0.8
Podの順序インデックスがpartitionよりも小さいため、web-1
は元の設定のコンテナイメージにリストアされました。partitionを指定すると、StatefulSetの.spec.template
が更新されたときに、順序インデックスがそれ以上の値を持つすべてのPodがアップデートされます。partitionよりも小さな順序インデックスを持つPodが削除されたり終了されたりすると、元の設定のPodにリストアされます。
フェーズロールアウト
カナリア版 をロールアウトするのと同じような方法でパーティションされたローリングアップデートを使用すると、フェーズロールアウト(例: 線形、幾何級数的、指数関数的ロールアウト)を実行できます。フェーズロールアウトを実行するには、コントローラーがアップデートを途中で止めてほしい順序インデックスをpartition
に設定します。
現在、partitionは2
に設定されています。partitionを0
に設定します。
kubectl patch statefulset web -p '{"spec":{"updateStrategy":{"type":"RollingUpdate","rollingUpdate":{"partition":0}}}}'
statefulset.apps/web patched
StatefulSet内のすべてのPodがRunningかつReadyの状態になるまで待ちます。
kubectl get pod -l app = nginx -w
出力は次のようになります。
NAME READY STATUS RESTARTS AGE
web-0 1/1 Running 0 3m
web-1 0/1 ContainerCreating 0 11s
web-2 1/1 Running 0 2m
web-1 1/1 Running 0 18s
web-0 1/1 Terminating 0 3m
web-0 1/1 Terminating 0 3m
web-0 0/1 Terminating 0 3m
web-0 0/1 Terminating 0 3m
web-0 0/1 Terminating 0 3m
web-0 0/1 Terminating 0 3m
web-0 0/1 Pending 0 0s
web-0 0/1 Pending 0 0s
web-0 0/1 ContainerCreating 0 0s
web-0 1/1 Running 0 3s
StatefulSet内のPodのコンテナイメージの詳細を取得します。
for p in 0 1 2; do kubectl get pod "web- $p " --template '{{range $i, $c := .spec.containers}}{{$c.image}}{{end}}' ; echo; done
k8s.gcr.io/nginx-slim:0.7
k8s.gcr.io/nginx-slim:0.7
k8s.gcr.io/nginx-slim:0.7
partition
を0
に移動することで、StatefulSetがアップデート処理を続けられるようにできます。
OnDelete
OnDelete
アップデート戦略は、(1.6以前の)レガシーな動作を実装しています。このアップデート戦略を選択すると、StatefulSetの.spec.template
フィールドへ変更を加えても、StatefulSetコントローラーが自動的にPodを更新しなくなります。この戦略を選択するには、.spec.template.updateStrategy.type
にOnDelete
を設定します。
StatefulSetを削除する
StatefulSetは、非カスケードな削除とカスケードな削除の両方をサポートしています。非カスケードな削除では、StatefulSetが削除されても、StatefulSet内のPodは削除されません。カスケードな削除では、StatefulSetとPodが一緒に削除されます。
非カスケードな削除
1つ目のターミナルで、StatefulSet内のPodを監視します
kubectl get pods -w -l app=nginx
kubectl delete
を使用して、StatefulSetを削除します。このとき、--cascade=orphan
パラメーターをコマンドに与えてください。このパラメーターは、Kubernetesに対して、StatefulSetだけを削除して配下のPodは削除しないように指示します。
kubectl delete statefulset web --cascade= orphan
statefulset.apps "web" deleted
Podを取得して、ステータスを確認します。
kubectl get pods -l app = nginx
NAME READY STATUS RESTARTS AGE
web-0 1/1 Running 0 6m
web-1 1/1 Running 0 7m
web-2 1/1 Running 0 5m
web
が削除されても、すべてのPodはまだRunningかつReadyの状態のままです。web-0
を削除します。
pod "web-0" deleted
StatefulSetのPodを取得します。
kubectl get pods -l app = nginx
NAME READY STATUS RESTARTS AGE
web-1 1/1 Running 0 10m
web-2 1/1 Running 0 7m
web
StatefulSetはすでに削除されているため、web-0
は再起動しません。
1つ目のターミナルで、StatefulSetのPodを監視します。
kubectl get pods -w -l app = nginx
2つ目のターミナルで、StatefulSetを再作成します。もしnginx
Serviceを削除しなかった場合(この場合は削除するべきではありませんでした)、Serviceがすでに存在することを示すエラーが表示されます。
kubectl apply -f web.yaml
statefulset.apps/web created
service/nginx unchanged
このエラーは無視してください。このメッセージは、すでに存在する nginx というheadless Serviceを作成しようと試みたということを示しているだけです。
1つ目のターミナルで、kubectl get
コマンドの出力を確認します。
kubectl get pods -w -l app = nginx
NAME READY STATUS RESTARTS AGE
web-1 1/1 Running 0 16m
web-2 1/1 Running 0 2m
NAME READY STATUS RESTARTS AGE
web-0 0/1 Pending 0 0s
web-0 0/1 Pending 0 0s
web-0 0/1 ContainerCreating 0 0s
web-0 1/1 Running 0 18s
web-2 1/1 Terminating 0 3m
web-2 0/1 Terminating 0 3m
web-2 0/1 Terminating 0 3m
web-2 0/1 Terminating 0 3m
web
StatefulSetが再作成されると、最初にweb-0
を再実行します。web-1
はすでにRunningかつReadyの状態であるため、web-0
がRunningかつReadyの状態に移行すると、StatefulSetは単純にこのPodを選びます。StatefulSetをreplicas
を2にして再作成したため、一度web-0
が再作成されて、web-1
がすでにRunningかつReadyの状態であることが判明したら、web-2
は停止されます。
Podのウェブサーバーが配信しているindex.html
ファイルのコンテンツをもう一度見てみましょう。
for i in 0 1; do kubectl exec -i -t "web- $i " -- curl http://localhost/; done
web-0
web-1
たとえStatefulSetとweb-0
Podの両方が削除されても、Podは最初にindex.html
ファイルに書き込んだホスト名をまだ配信しています。これは、StatefulSetがPodに紐付けられたPersistentVolumeを削除しないためです。StatefulSetを再作成してweb-0
を再実行すると、元のPersistentVolumeが再マウントされます。
カスケードな削除
1つ目のターミナルで、StatefulSet内のPodを監視します。
kubectl get pods -w -l app = nginx
2つ目のターミナルで、StatefulSetをもう一度削除します。今回は、--cascade=orphan
パラメーターを省略します。
kubectl delete statefulset web
statefulset.apps "web" deleted
1つ目のターミナルで実行しているkubectl get
コマンドの出力を確認し、すべてのPodがTerminatingの状態に変わるまで待ちます。
kubectl get pods -w -l app = nginx
NAME READY STATUS RESTARTS AGE
web-0 1/1 Running 0 11m
web-1 1/1 Running 0 27m
NAME READY STATUS RESTARTS AGE
web-0 1/1 Terminating 0 12m
web-1 1/1 Terminating 0 29m
web-0 0/1 Terminating 0 12m
web-0 0/1 Terminating 0 12m
web-0 0/1 Terminating 0 12m
web-1 0/1 Terminating 0 29m
web-1 0/1 Terminating 0 29m
web-1 0/1 Terminating 0 29m
スケールダウン のセクションで見たように、順序インデックスの逆順に従って、Podは一度に1つずつ終了します。StatefulSetコントローラーは、次のPodを終了する前に、前のPodが完全に終了するまで待ちます。
備考: カスケードな削除ではStatefulSetがPodとともに削除されますが、StatefulSetと紐付けられたheadless Serviceは削除されません。そのため、nginx
Serviceは手動で削除する必要があります。
kubectl delete service nginx
service "nginx" deleted
さらにもう一度、StatefulSetとheadless Serviceを再作成します。
kubectl apply -f web.yaml
service/nginx created
statefulset.apps/web created
StatefulSet上のすべてのPodがRunningかつReadyの状態に変わったら、Pod上のindex.html
ファイルのコンテンツを取得します。
for i in 0 1; do kubectl exec -i -t "web- $i " -- curl http://localhost/; done
web-0
web-1
StatefulSetを完全に削除して、すべてのPodが削除されたとしても、PersistentVolumeがマウントされたPodが再生成されて、web-0
とweb-1
はホスト名の配信を続けます。
最後に、web
StatefulSetを削除します。
kubectl delete service nginx
service "nginx" deleted
そして、nginx
Serviceも削除します。
kubectl delete statefulset web
statefulset "web" deleted
Pod管理ポリシー
分散システムによっては、StatefulSetの順序の保証が不必要であったり望ましくない場合もあります。こうしたシステムでは、一意性と同一性だけが求められます。この問題に対処するために、Kubernetes 1.7でStatefulSet APIオブジェクトに.spec.podManagementPolicy
が導入されました。
OrderedReadyのPod管理
OrderedReady
のPod管理はStatefulSetのデフォルトの設定です。StatefulSetコントローラーに対して、これまでに紹介したような順序の保証を尊重するように指示します。
ParallelのPod管理
Parallel
のPod管理では、StatefulSetコントローラーに対して、PodがRunningかつReadyの状態や完全に停止するまで待たないように指示し、すべてのPodを並列に起動または停止させるようにします。
apiVersion : v1
kind : Service
metadata :
name : nginx
labels :
app : nginx
spec :
ports :
- port : 80
name : web
clusterIP : None
selector :
app : nginx
---
apiVersion : apps/v1
kind : StatefulSet
metadata :
name : web
spec :
serviceName : "nginx"
podManagementPolicy : "Parallel"
replicas : 2
selector :
matchLabels :
app : nginx
template :
metadata :
labels :
app : nginx
spec :
containers :
- name : nginx
image : k8s.gcr.io/nginx-slim:0.8
ports :
- containerPort : 80
name : web
volumeMounts :
- name : www
mountPath : /usr/share/nginx/html
volumeClaimTemplates :
- metadata :
name : www
spec :
accessModes : [ "ReadWriteOnce" ]
resources :
requests :
storage : 1Gi
上の例をダウンロードして、web-parallel.yaml
という名前でファイルに保存してください。
このマニフェストは、.spec.podManagementPolicy
がParallel
に設定されている以外は、前にダウンロードしたweb
StatefulSetと同一です。
1つ目のターミナルで、StatefulSet内のPodを監視します。
kubectl get pod -l app = nginx -w
2つ目のターミナルで、マニフェスト内のStatefulSetとServiceを作成します。
kubectl apply -f web-parallel.yaml
service/nginx created
statefulset.apps/web created
1つ目のターミナルで実行したkubectl get
コマンドの出力を確認します。
kubectl get pod -l app = nginx -w
NAME READY STATUS RESTARTS AGE
web-0 0/1 Pending 0 0s
web-0 0/1 Pending 0 0s
web-1 0/1 Pending 0 0s
web-1 0/1 Pending 0 0s
web-0 0/1 ContainerCreating 0 0s
web-1 0/1 ContainerCreating 0 0s
web-0 1/1 Running 0 10s
web-1 1/1 Running 0 10s
StatefulSetコントローラーはweb-0
とweb-1
を同時に起動しています。
2つ目のターミナルで、StatefulSetをスケールしてみます。
kubectl scale statefulset/web --replicas= 4
statefulset.apps/web scaled
kubectl get
コマンドを実行しているターミナルの出力を確認します。
web-3 0/1 Pending 0 0s
web-3 0/1 Pending 0 0s
web-3 0/1 Pending 0 7s
web-3 0/1 ContainerCreating 0 7s
web-2 1/1 Running 0 10s
web-3 1/1 Running 0 26s
StatefulSetが2つのPodを実行し、1つ目のPodがRunningかつReadyの状態になるのを待たずに2つ目のPodを実行しているのがわかります。
クリーンアップ
2つのターミナルが開かれているはずなので、クリーンアップの一部としてkubectl
コマンドを実行する準備ができています。
kubectl delete sts web
# stsは、statefulsetの略です。
kubectl get
を監視すると、Podが削除されていく様子を確認できます。
kubectl get pod -l app = nginx -w
web-3 1/1 Terminating 0 9m
web-2 1/1 Terminating 0 9m
web-3 1/1 Terminating 0 9m
web-2 1/1 Terminating 0 9m
web-1 1/1 Terminating 0 44m
web-0 1/1 Terminating 0 44m
web-0 0/1 Terminating 0 44m
web-3 0/1 Terminating 0 9m
web-2 0/1 Terminating 0 9m
web-1 0/1 Terminating 0 44m
web-0 0/1 Terminating 0 44m
web-2 0/1 Terminating 0 9m
web-2 0/1 Terminating 0 9m
web-2 0/1 Terminating 0 9m
web-1 0/1 Terminating 0 44m
web-1 0/1 Terminating 0 44m
web-1 0/1 Terminating 0 44m
web-0 0/1 Terminating 0 44m
web-0 0/1 Terminating 0 44m
web-0 0/1 Terminating 0 44m
web-3 0/1 Terminating 0 9m
web-3 0/1 Terminating 0 9m
web-3 0/1 Terminating 0 9m
削除の間、StatefulSetはすべてのPodを並列に削除し、順序インデックスが1つ前のPodが停止するのを待つことはありません。
kubectl get
コマンドを実行しているターミナルを閉じて、nginx
Serviceを削除します。
備考: このチュートリアルで使用したPersistentVolumeのための永続ストレージも削除する必要があります。
すべてのストレージが再利用できるようにするために、環境、ストレージの設定、プロビジョニング方法に基づいて必要な手順に従ってください。
6.1 - AppArmorを使用してコンテナのリソースへのアクセスを制限する
FEATURE STATE: Kubernetes v1.4 [beta]
AppArmorは、Linux標準のユーザー・グループをベースとしたパーミッションを補完するLinuxカーネルのセキュリティモジュールであり、プログラムのアクセスを限定されたリソースセットに制限するために利用されます。AppArmorを設定することで、任意のアプリケーションの攻撃サーフェイスとなりうる面を減らしたり、より優れた多重の防御を提供できます。AppArmorは、たとえばLinuxのcapability、ネットワークアクセス、ファイルのパーミッションなど、特定のプログラムやコンテナに必要なアクセスを許可するようにチューニングされたプロファイルにより設定を行います。各プロファイルは、許可されなかったリソースへのアクセスをブロックするenforcing モードと、ルール違反を報告するだけのcomplain モードのいずれかで実行できます。
AppArmorを利用すれば、コンテナに許可することを制限したりシステムログを通してよりよい監査を提供することで、デプロイをよりセキュアにする助けになります。しかし、AppArmorは銀の弾丸ではなく、アプリケーションコードの悪用からの防御を強化できるだけであることを心に留めておくことが重要です。制限の強い優れたプロファイルを提供し、アプリケーションとクラスターを別の角度から強化することが重要です。
目標
プロファイルをノードに読み込む方法の例を見る
Pod上でプロファイルを矯正する方法を学ぶ
プロファイルが読み込まれたかを確認する方法を学ぶ
プロファイルに違反した場合に何が起こるのかを見る
プロファイルが読み込めなかった場合に何が起こるのかを見る
始める前に
以下のことを確認してください。
Kubernetesのバージョンがv1.4以上であること。KubernetesのAppArmorのサポートはv1.4で追加されました。v1.4より古いバージョンのKubernetesのコンポーネントは、新しいAppArmorのアノテーションを認識できないため、AppArmorの設定を与えたとしても黙って無視されてしまいます 。Podが期待した保護を確実に受けられるようにするためには、次のようにノードのKubeletのバージョンを確認することが重要です。
kubectl get nodes -o= jsonpath = $'{range .items[*]}{@.metadata.name}: {@.status.nodeInfo.kubeletVersion}\n{end}'
gke-test-default-pool-239f5d02-gyn2: v1.4.0
gke-test-default-pool-239f5d02-x1kf: v1.4.0
gke-test-default-pool-239f5d02-xwux: v1.4.0
AppArmorカーネルモジュールが有効であること。LinuxカーネルがAppArmorプロファイルを強制するためには、AppArmorカーネルモジュールのインストールと有効化が必須です。UbuntuやSUSEなどのディストリビューションではデフォルトで有効化されますが、他の多くのディストリビューションでのサポートはオプションです。モジュールが有効になっているかチェックするには、次のように/sys/module/apparmor/parameters/enabled
ファイルを確認します。
cat /sys/module/apparmor/parameters/enabled
Y
KubeletがAppArmorをサポートしていれば(>= v1.4)、カーネルモジュールが有効になっていない場合にはAppArmorオプションが付いたPodを拒否します。
備考: UbuntuはAppArmorに対して、アップストリームのLinuxにマージしていない多数のパッチを当てています。その中には、追加のフックや機能を加えるパッチも含まれます。Kubernetesはアップストリームのバージョンでのみテストされており、その他の機能に対するサポートを約束していません。
コンテナランタイムがAppArmorをサポートしていること。現在、Kubernetesがサポートするすべての一般的なコンテナランタイム、Docker 、CRI-O 、containerd などは、AppArmorをサポートしています。関連するランタイムのドキュメントを参照して、クラスターがAppArmorを利用するための要求を満たしているかどうかを検証してください。
プロファイルが読み込まれていること。AppArmorがPodに適用されるのは、各コンテナが実行されるべきAppArmorプロファイルを指定したときです。もし指定されたプロファイルがまだカーネルに読み込まれていなければ、Kubelet(>= v1.4)はPodを拒否します。どのプロファイルがノードに読み込まれているのかを確かめるには、次のようなコマンドを実行して/sys/kernel/security/apparmor/profiles
をチェックします。
ssh gke-test-default-pool-239f5d02-gyn2 "sudo cat /sys/kernel/security/apparmor/profiles | sort"
apparmor-test-deny-write (enforce)
apparmor-test-audit-write (enforce)
docker-default (enforce)
k8s-nginx (enforce)
ノード上でのプロファイルの読み込みの詳細については、プロファイルを使用したノードのセットアップ を参照してください。
KubeletのバージョンがAppArmorサポートに対応しているもの(>= v1.4)である限り、Kubeletは必要条件を1つでも満たさないAppArmorオプションが付けられたPodをリジェクトします。また、ノード上のAppArmorのサポートは、次のようにready conditionのメッセージで確認することもできます(ただし、この機能は将来のリリースで削除される可能性があります)。
kubectl get nodes -o= jsonpath = $'{range .items[*]}{@.metadata.name}: {.status.conditions[?(@.reason=="KubeletReady")].message}\n{end}'
gke-test-default-pool-239f5d02-gyn2: kubelet is posting ready status. AppArmor enabled
gke-test-default-pool-239f5d02-x1kf: kubelet is posting ready status. AppArmor enabled
gke-test-default-pool-239f5d02-xwux: kubelet is posting ready status. AppArmor enabled
Podをセキュアにする
AppArmorのプロファイルは各コンテナごとに 指定します。Podのコンテナで実行するAppArmorのプロファイルを指定するには、Podのメタデータに次のようなアノテーションを追加します。
container.apparmor.security.beta.kubernetes.io/<container_name> : <profile_ref>
ここで、<container_name>
はプロファイルを適用するコンテナの名前であり、<profile_ref>
には適用するプロファイルを指定します。profile_ref
は次の値のうち1つを指定します。
runtime/default
: ランタイムのデフォルトのプロファイルを適用する
localhost/<profile_name>
: <profile_name>
という名前でホストにロードされたプロファイルを適用する
unconfined
: いかなるプロファイルもロードされないことを示す
アノテーションとプロファイルの名前のフォーマットの詳細については、APIリファレンス を参照してください。
KubernetesのAppArmorの強制では、まずはじめにすべての前提条件が満たされているかどうかをチェックします。その後、強制を行うためにプロファイルの選択をコンテナランタイムに委ねます。前提条件が満たされなかった場合、Podはリジェクトされ、実行されません。
プロファイルが適用されたかどうか確認するには、AppArmor securityオプションがコンテナ作成イベントに一覧されているかどうかを確認します。
kubectl get events | grep Created
22s 22s 1 hello-apparmor Pod spec.containers{hello} Normal Created {kubelet e2e-test-stclair-node-pool-31nt} Created container with docker id 269a53b202d3; Security:[seccomp=unconfined apparmor=k8s-apparmor-example-deny-write]
proc attrを調べることで、コンテナのルートプロセスが正しいプロファイルで実行されているかどうかを直接確認することもできます。
kubectl exec <pod_name> cat /proc/1/attr/current
k8s-apparmor-example-deny-write (enforce)
例
この例は、クラスターがすでにAppArmorのサポート付きでセットアップ済みであることを前提としています。
まず、使用したいプロファイルをノード上に読み込む必要があります。このプロファイルは、すべてのファイル書き込みを拒否します。
#include <tunables/global>
profile k8s-apparmor-example-deny-write flags =( attach_disconnected) {
#include <abstractions/base>
file,
# Deny all file writes.
deny /** w,
}
Podがどのノードにスケジュールされるかは予測できないため、プロファイルはすべてのノードに読み込ませる必要があります。この例では、単純にSSHを使ってプロファイルをインストールしますが、プロファイルを使用したノードのセットアップ では、他のアプローチについて議論しています。
NODES =(
# SSHでアクセス可能なノードのドメイン名
gke-test-default-pool-239f5d02-gyn2.us-central1-a.my-k8s
gke-test-default-pool-239f5d02-x1kf.us-central1-a.my-k8s
gke-test-default-pool-239f5d02-xwux.us-central1-a.my-k8s)
for NODE in ${ NODES [*]} ; do ssh $NODE 'sudo apparmor_parser -q <<EOF
#include <tunables/global>
profile k8s-apparmor-example-deny-write flags=(attach_disconnected) {
#include <abstractions/base>
file,
# Deny all file writes.
deny /** w,
}
EOF'
done
次に、deny-writeプロファイルを使用した単純な "Hello AppArmor" Podを実行します。
apiVersion : v1
kind : Pod
metadata :
name : hello-apparmor
annotations :
# Tell Kubernetes to apply the AppArmor profile "k8s-apparmor-example-deny-write".
# Note that this is ignored if the Kubernetes node is not running version 1.4 or greater.
container.apparmor.security.beta.kubernetes.io/hello : localhost/k8s-apparmor-example-deny-write
spec :
containers :
- name : hello
image : busybox
command : [ "sh" , "-c" , "echo 'Hello AppArmor!' && sleep 1h" ]
kubectl create -f ./hello-apparmor.yaml
Podイベントを確認すると、PodコンテナがAppArmorプロファイル "k8s-apparmor-example-deny-write" を使用して作成されたことがわかります。
kubectl get events | grep hello-apparmor
14s 14s 1 hello-apparmor Pod Normal Scheduled {default-scheduler } Successfully assigned hello-apparmor to gke-test-default-pool-239f5d02-gyn2
14s 14s 1 hello-apparmor Pod spec.containers{hello} Normal Pulling {kubelet gke-test-default-pool-239f5d02-gyn2} pulling image "busybox"
13s 13s 1 hello-apparmor Pod spec.containers{hello} Normal Pulled {kubelet gke-test-default-pool-239f5d02-gyn2} Successfully pulled image "busybox"
13s 13s 1 hello-apparmor Pod spec.containers{hello} Normal Created {kubelet gke-test-default-pool-239f5d02-gyn2} Created container with docker id 06b6cd1c0989; Security:[seccomp=unconfined apparmor=k8s-apparmor-example-deny-write]
13s 13s 1 hello-apparmor Pod spec.containers{hello} Normal Started {kubelet gke-test-default-pool-239f5d02-gyn2} Started container with docker id 06b6cd1c0989
コンテナがこのプロファイルで実際に実行されていることを確認するために、コンテナのproc attrをチェックします。
kubectl exec hello-apparmor -- cat /proc/1/attr/current
k8s-apparmor-example-deny-write (enforce)
最後に、ファイルへの書き込みを行おうとすることで、プロファイルに違反すると何が起こるか見てみましょう。
kubectl exec hello-apparmor touch -- /tmp/test
touch: /tmp/test: Permission denied
error: error executing remote command: command terminated with non-zero exit code: Error executing in Docker Container: 1
まとめとして、読み込まれていないプロファイルを指定しようとするとどうなるのか見てみましょう。
kubectl create -f /dev/stdin <<EOF
apiVersion : v1
kind : Pod
metadata :
name : hello-apparmor-2
annotations :
container.apparmor.security.beta.kubernetes.io/hello : localhost/k8s-apparmor-example-allow-write
spec :
containers :
- name : hello
image : busybox
command : [ "sh" , "-c" , "echo 'Hello AppArmor!' && sleep 1h" ]
EOF
pod/hello-apparmor-2 created
kubectl describe pod hello-apparmor-2
Name: hello-apparmor-2
Namespace: default
Node: gke-test-default-pool-239f5d02-x1kf/
Start Time: Tue, 30 Aug 2016 17:58:56 -0700
Labels: <none>
Annotations: container.apparmor.security.beta.kubernetes.io/hello=localhost/k8s-apparmor-example-allow-write
Status: Pending
Reason: AppArmor
Message: Pod Cannot enforce AppArmor: profile "k8s-apparmor-example-allow-write" is not loaded
IP:
Controllers: <none>
Containers:
hello:
Container ID:
Image: busybox
Image ID:
Port:
Command:
sh
-c
echo 'Hello AppArmor!' && sleep 1h
State: Waiting
Reason: Blocked
Ready: False
Restart Count: 0
Environment: <none>
Mounts:
/var/run/secrets/kubernetes.io/serviceaccount from default-token-dnz7v (ro)
Conditions:
Type Status
Initialized True
Ready False
PodScheduled True
Volumes:
default-token-dnz7v:
Type: Secret (a volume populated by a Secret)
SecretName: default-token-dnz7v
Optional: false
QoS Class: BestEffort
Node-Selectors: <none>
Tolerations: <none>
Events:
FirstSeen LastSeen Count From SubobjectPath Type Reason Message
--------- -------- ----- ---- ------------- -------- ------ -------
23s 23s 1 {default-scheduler } Normal Scheduled Successfully assigned hello-apparmor-2 to e2e-test-stclair-node-pool-t1f5
23s 23s 1 {kubelet e2e-test-stclair-node-pool-t1f5} Warning AppArmor Cannot enforce AppArmor: profile "k8s-apparmor-example-allow-write" is not loaded
PodのステータスはPendingとなり、Pod Cannot enforce AppArmor: profile "k8s-apparmor-example-allow-write" is not loaded
(PodはAppArmorを強制できません: プロファイル "k8s-apparmor-example-allow-write" はロードされていません)という役に立つエラーメッセージが表示されています。同じメッセージのイベントも記録されています。
管理
プロファイルを使用したノードのセットアップ
現在、KubernetesはAppArmorのプロファイルをノードに読み込むネイティブの仕組みは提供していません。しかし、プロファイルをセットアップする方法は、以下のように様々な方法があります。
各ノード上に正しいプロファイルがロードされていることを保証するPodを実行するDaemonSet を利用する方法。ここ に実装例があります。
ノードの初期化時に初期化スクリプト(例: Salt、Ansibleなど)や初期化イメージを使用する。
例 で示したような方法で、プロファイルを各ノードにコピーし、SSHで読み込む。
スケジューラーはどのプロファイルがどのノードに読み込まれているのかがわからないため、すべてのプロファイルがすべてのノードに読み込まれていなければなりません。もう1つのアプローチとしては、各プロファイル(あるいはプロファイルのクラス)ごとにノードラベルを追加し、node selector を用いてPodが必要なプロファイルを読み込んだノードで実行されるようにする方法もあります。
PodSecurityPolicyを使用したプロファイルの制限
PodSecurityPolicy extensionが有効になっている場合、クラスタ全体でAppArmorn制限が適用されます。PodSecurityPolicyを有効にするには、apiserver
上で次のフラグを設定する必要があります。
--enable-admission-plugins=PodSecurityPolicy[,others...]
AppArmorのオプションはPodSecurityPolicy上でアノテーションとして指定します。
apparmor.security.beta.kubernetes.io/defaultProfileName : <profile_ref>
apparmor.security.beta.kubernetes.io/allowedProfileNames : <profile_ref>[,others...]
defaultProfileNameオプションには、何も指定されなかった場合にコンテナにデフォルトで適用されるプロファイルを指定します。allowedProfileNamesオプションには、Podコンテナの実行が許可されるプロファイルのリストを指定します。両方のオプションが指定された場合、デフォルトは許可されなければいけません。プロファイルはコンテナ上で同じフォーマットで指定されます。完全な仕様については、APIリファレンス を参照してください。
AppArmorの無効化
クラスタ上でAppArmorを利用可能にしたくない場合、次のコマンドラインフラグで無効化できます。
--feature-gates=AppArmor=false
無効化すると、AppArmorプロファイルを含むPodは"Forbidden"エラーで検証に失敗します。ただし、デフォルトのdockerは非特権Pod上では"docker-default"というプロファイルを常に有効化し(AppArmorカーネルモジュールが有効である場合)、フィーチャーゲートで無効化したとしても有効化し続けることに注意してください。AppArmorを無効化するオプションは、AppArmorが一般利用(GA)になったときに削除される予定です。
AppArmorを使用するKubernetes v1.4にアップグレードする
クラスタをv1.4にアップグレードするために、AppArmorに関する操作は必要ありません。ただし、既存のPodがAppArmorのアノテーションを持っている場合、検証(またはPodSecurityPolicy admission)は行われません。もしpermissiveなプロファイルがノードに読み込まれていた場合、悪意のあるユーザーがPodの権限を上述のdocker-defaultより昇格させるために、permissiveなプロファイルを再適用する恐れがあります。これが問題となる場合、apparmor.security.beta.kubernetes.io
のアノテーションを含むすべてのPodのクラスターをクリーンアップすることを推奨します。
一般利用可能(General Availability)への更新パス
AppArmorが一般利用可能(GA)になったとき、現在アノテーションで指定しているオプションはフィールドに変換されます。移行中のすべてのアップグレードとダウングレードの経路をサポートするのは非常に微妙であるため、以降が必要になったときに詳細に説明する予定です。最低2リリースの間はフィールドとアノテーションの両方がサポートされるようにする予定です。最低2リリースの後は、アノテーションは明示的に拒否されるようになります。
Profilesの作成
AppArmorのプロファイルを正しく指定するのはやっかいな作業です。幸い、その作業を補助するツールがいくつかあります。
aa-genprof
およびaa-logprof
は、アプリケーションの動作とログを監視することによりプロファイルのルールを生成します。詳しい説明については、AppArmor documentation を参照してください。
bane は、Docker向けのAppArmorのプロファイル・ジェネレータです。簡略化されたプロファイル言語を使用しています。
プロファイルの生成には、アプリケーションを開発用ワークステーション上でDockerで実行することを推奨します。しかし、実際にPodが実行されるKubernetesノード上でツールを実行してはいけない理由はありません。
AppArmorに関する問題をデバッグするには、システムログをチェックして、特に何が拒否されたのかを確認できます。AppArmorのログはdmesg
にverboseメッセージを送り、エラーは通常システムログまたはjournalctl
で確認できます。詳しい情報は、AppArmor failures で提供されています。
APIリファレンス
Podアノテーション
コンテナが実行するプロファイルを指定します。
key : container.apparmor.security.beta.kubernetes.io/<container_name>
ここで、<container_name>
はPod内のコンテナの名前を一致させます。Pod内の各コンテナごとに別々のプロファイルを指定できます。
value : 下で説明するプロファイルのリファレンス
プロファイルのリファレンス
runtime/default
: デフォルトのランタイムプロファイルを指します。
(PodSecurityPolicyのデフォルトを設定せずに)プロファイルを指定しない場合と同等ですが、AppArmorを有効化する必要があります。
Dockerの場合、非特権コンテナではdocker-default
プロファイルが選択され、特権コンテナではunconfined(プロファイルなし)が選択されます。
localhost/<profile_name>
: 名前で指定されたノード(localhost)に読み込まれたプロファイルを指します。
unconfined
: これは実質的にコンテナ上のAppArmorを無効化します。
これ以外のプロファイルリファレンスはすべて無効です。
PodSecurityPolicyアノテーション
何も指定されなかった場合にコンテナに適用するデフォルトのプロファイルは、以下のように指定します。
key : apparmor.security.beta.kubernetes.io/defaultProfileName
value : 上で説明したプロファイルのリファレンス
Podコンテナが指定することを許可するプロファイルのリストは、以下のように指定します。
key : apparmor.security.beta.kubernetes.io/allowedProfileNames
value : カンマ区切りの上述のプロファイルリファレンスのリスト
プロファイル名ではエスケープしたカンマは不正な文字ではありませんが、ここでは明示的に許可されません。
次の項目
追加のリソースとしては以下のものがあります。
7.1 - 送信元IPを使用する
Kubernetesクラスター内で実行されているアプリケーションは、Serviceという抽象化を経由して、他のアプリケーションや外の世界との発見や通信を行います。このドキュメントでは、異なる種類のServiceに送られたパケットの送信元IPに何が起こるのか、そして必要に応じてこの振る舞いを切り替える方法について説明します。
始める前に
用語
このドキュメントでは、以下の用語を使用します。
NAT
ネットワークアドレス変換(network address translation)
送信元NAT
パケットの送信元のIPを置換します。このページでは、通常ノードのIPアドレスを置換することを意味します。
送信先NAT
パケットの送信先のIPを置換します。このページでは、通常Pod のIPアドレスを置換することを意味します。
VIP
Kubernetes内のすべてのService などに割り当てられる仮想IPアドレス(virtual IP address)です。
kube-proxy
すべてのノード上でServiceのVIPを管理するネットワークデーモンです。
前提条件
Kubernetesクラスターが必要、かつそのクラスターと通信するためにkubectlコマンドラインツールが設定されている必要があります。
このチュートリアルは、コントロールプレーンのホストとして動作していない少なくとも2つのノードを持つクラスターで実行することをおすすめします。
まだクラスターがない場合、minikube を使って作成するか、
以下のいずれかのKubernetesプレイグラウンドも使用できます:
以下の例では、HTTPヘッダー経由で受け取ったリクエストの送信元IPをエコーバックする、小さなnginxウェブサーバーを使用します。次のコマンドでウェブサーバーを作成できます。
kubectl create deployment source-ip-app --image= k8s.gcr.io/echoserver:1.4
出力は次のようになります。
deployment.apps/source-ip-app created
目標
単純なアプリケーションを様々な種類のService経由で公開する
それぞれの種類のServiceがどのように送信元IPのNATを扱うかを理解する
送信元IPを保持することに関わるトレードオフを理解する
Type=ClusterIP
を使用したServiceでの送信元IP
kube-proxyがiptablesモード (デフォルト)で実行されている場合、クラスター内部からClusterIPに送られたパケットに送信元のNATが行われることは決してありません。kube-proxyが実行されているノード上でhttp://localhost:10249/proxyMode
にリクエストを送って、kube-proxyのモードを問い合わせてみましょう。
kubectl get nodes
出力は次のようになります。
NAME STATUS ROLES AGE VERSION
kubernetes-node-6jst Ready <none> 2h v1.13.0
kubernetes-node-cx31 Ready <none> 2h v1.13.0
kubernetes-node-jj1t Ready <none> 2h v1.13.0
これらのノードの1つでproxyモードを取得します(kube-proxyはポート10249をlistenしています)。
# このコマンドは、問い合わせを行いたいノード上のシェルで実行してください。
curl http://localhost:10249/proxyMode
出力は次のようになります。
iptables
source IPアプリのServiceを作成することで、送信元IPが保持されているかテストできます。
kubectl expose deployment source-ip-app --name= clusterip --port= 80 --target-port= 8080
出力は次のようになります。
service/clusterip exposed
kubectl get svc clusterip
出力は次のようになります。
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
clusterip ClusterIP 10.0.170.92 <none> 80/TCP 51s
そして、同じクラスター上のPodからClusterIP
にアクセスします。
kubectl run busybox -it --image= busybox --restart= Never --rm
出力は次のようになります。
Waiting for pod default/busybox to be running, status is Pending, pod ready: false
If you don't see a command prompt, try pressing enter.
これで、Podの内部でコマンドが実行できます。
# このコマンドは、"kubectl run" のターミナルの内部で実行してください
ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_lft forever preferred_lft forever
inet6 ::1/128 scope host
valid_lft forever preferred_lft forever
3: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1460 qdisc noqueue
link/ether 0a:58:0a:f4:03:08 brd ff:ff:ff:ff:ff:ff
inet 10.244.3.8/24 scope global eth0
valid_lft forever preferred_lft forever
inet6 fe80::188a:84ff:feb0:26a5/64 scope link
valid_lft forever preferred_lft forever
そして、wget
を使用してローカルのウェブサーバーに問い合わせます。
# "10.0.170.92" の部分をService名が"clusterip"のIPv4アドレスに置き換えてください
wget -qO - 10.0.170.92
CLIENT VALUES:
client_address=10.244.3.8
command=GET
...
client_address
は常にクライアントのPodのIPアドレスになります。これは、クライアントのPodとサーバーのPodが同じノード内にあっても異なるノードにあっても変わりません。
Type=NodePort
を使用したServiceでの送信元IP
Type=NodePort
を使用したServiceに送られたパケットは、デフォルトで送信元のNATが行われます。NodePort
Serviceを作ることでテストできます。
kubectl expose deployment source-ip-app --name= nodeport --port= 80 --target-port= 8080 --type= NodePort
出力は次のようになります。
service/nodeport exposed
NODEPORT = $( kubectl get -o jsonpath = "{.spec.ports[0].nodePort}" services nodeport)
NODES = $( kubectl get nodes -o jsonpath = '{ $.items[*].status.addresses[?(@.type=="InternalIP")].address }' )
クラウドプロバイダーで実行する場合、上に示したnodes:nodeport
に対してファイアウォールのルールを作成する必要があるかもしれません。それでは、上で割り当てたノードポート経由で、クラスターの外部からServiceにアクセスしてみましょう。
for node in $NODES ; do curl -s $node :$NODEPORT | grep -i client_address; done
出力は次のようになります。
client_address=10.180.1.1
client_address=10.240.0.5
client_address=10.240.0.3
これらは正しいクライアントIPではなく、クラスターのinternal IPであることがわかります。ここでは、次のようなことが起こっています。
クライアントがパケットをnode2:nodePort
に送信する
node2
は、パケット内の送信元IPアドレスを自ノードのIPアドレスに置換する(SNAT)
node2
は、パケット内の送信先IPアドレスをPodのIPアドレスに置換する
パケットはnode1にルーティングされ、endpointにルーティングされる
Podからの応答がnode2にルーティングされて戻ってくる
Podからの応答がクライアントに送り返される
図で表すと次のようになります。
graph LR;
client(client)-->node2[Node 2];
node2-->client;
node2-. SNAT .->node1[Node 1];
node1-. SNAT .->node2;
node1-->endpoint(Endpoint);
classDef plain fill:#ddd,stroke:#fff,stroke-width:4px,color:#000;
classDef k8s fill:#326ce5,stroke:#fff,stroke-width:4px,color:#fff;
class node1,node2,endpoint k8s;
class client plain;
JavaScript must be enabled to view this content
クライアントのIPが失われることを回避するために、Kubernetesにはクライアントの送信元IPを保持する 機能があります。service.spec.externalTrafficPolicy
の値をLocal
に設定すると、kube-proxyはローカルに存在するエンドポイントへのプロキシーリクエストだけをプロキシーし、他のノードへはトラフィックを転送しなくなります。このアプローチでは、オリジナルの送信元IPアドレスが保持されます。ローカルにエンドポイントが存在しない場合には、そのノードに送信されたパケットは損失します。そのため、エンドポイントに到達するパケットに適用する可能性のあるパケット処理ルールでは、送信元IPが正しいことを信頼できます。
次のようにしてservice.spec.externalTrafficPolicy
フィールドを設定します。
kubectl patch svc nodeport -p '{"spec":{"externalTrafficPolicy":"Local"}}'
出力は次のようになります。
service/nodeport patched
そして、再度テストしてみます。
for node in $NODES ; do curl --connect-timeout 1 -s $node :$NODEPORT | grep -i client_address; done
出力は次のようになります。
client_address=198.51.100.79
今度は、正しい クライアントIPが含まれる応答が1つだけ得られました。これは、エンドポイントのPodが実行されているノードから来たものです。
ここでは、次のようなことが起こっています。
クライアントがパケットをエンドポイントが存在しないnode2:nodePort
に送信する
パケットが損失する
クライアントがパケットをエンドポイントが存在する node1:nodePort
に送信する
node1は、正しい送信元IPを持つパケットをエンドポイントにルーティングする
図で表すと次のようになります。
graph TD;
client --> node1[Node 1];
client(client) --x node2[Node 2];
node1 --> endpoint(endpoint);
endpoint --> node1;
classDef plain fill:#ddd,stroke:#fff,stroke-width:4px,color:#000;
classDef k8s fill:#326ce5,stroke:#fff,stroke-width:4px,color:#fff;
class node1,node2,endpoint k8s;
class client plain;
JavaScript must be enabled to view this content
Type=LoadBalancer
を使用したServiceでの送信元IP
Type=LoadBalancer
を使用したServiceに送られたパケットは、デフォルトで送信元のNATが行われます。Ready
状態にあるすべてのスケジュール可能なKubernetesのNodeは、ロードバランサーからのトラフィックを受付可能であるためです。そのため、エンドポイントが存在しないノードにパケットが到達した場合、システムはエンドポイントが存在する ノードにパケットをプロシキーします。このとき、(前のセクションで説明したように)パケットの送信元IPがノードのIPに置換されます。
ロードバランサー経由でsource-ip-appを公開することで、これをテストできます。
kubectl expose deployment source-ip-app --name= loadbalancer --port= 80 --target-port= 8080 --type= LoadBalancer
出力は次のようになります。
service/loadbalancer exposed
ServiceのIPアドレスを表示します。
kubectl get svc loadbalancer
出力は次のようになります。
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
loadbalancer LoadBalancer 10.0.65.118 203.0.113.140 80/TCP 5m
次に、Serviceのexternal-ipにリクエストを送信します。
出力は次のようになります。
CLIENT VALUES:
client_address=10.240.0.5
...
しかし、Google Kubernetes EngineやGCE上で実行している場合、同じservice.spec.externalTrafficPolicy
フィールドをLocal
に設定すると、ロードバランサーからのトラフィックを受け付け可能なノードのリストから、Serviceエンドポイントが存在しない ノードが強制的に削除されます。この動作は、ヘルスチェックを意図的に失敗させることによって実現されています。
図で表すと次のようになります。
アノテーションを設定することで動作をテストできます。
kubectl patch svc loadbalancer -p '{"spec":{"externalTrafficPolicy":"Local"}}'
Kubernetesにより割り当てられたservice.spec.healthCheckNodePort
フィールドをすぐに確認します。
kubectl get svc loadbalancer -o yaml | grep -i healthCheckNodePort
出力は次のようになります。
healthCheckNodePort : 32122
service.spec.healthCheckNodePort
フィールドは、/healthz
でhealth checkを配信しているすべてのノード上のポートを指しています。次のコマンドでテストできます。
kubectl get pod -o wide -l run = source-ip-app
出力は次のようになります。
NAME READY STATUS RESTARTS AGE IP NODE
source-ip-app-826191075-qehz4 1/1 Running 0 20h 10.180.1.136 kubernetes-node-6jst
curl
を使用して、さまざまなノード上の/healthz
エンドポイントからデータを取得します。
# このコマンドは選んだノードのローカル上で実行してください
curl localhost:32122/healthz
1 Service Endpoints found
ノードが異なると、得られる結果も異なる可能性があります。
# このコマンドは、選んだノード上でローカルに実行してください
curl localhost:32122/healthz
No Service Endpoints Found
コントロールプレーン 上で実行中のコントローラーは、クラウドのロードバランサーを割り当てる責任があります。同じコントローラーは、各ノード上のポートやパスを指すHTTPのヘルスチェックも割り当てます。エンドポイントが存在しない2つのノードがヘルスチェックに失敗するまで約10秒待った後、curl
を使用してロードバランサーのIPv4アドレスに問い合わせます。
出力は次のようになります。
CLIENT VALUES:
client_address=198.51.100.79
...
クロスプラットフォームのサポート
Type=LoadBalancer
を使用したServiceで送信元IPを保持する機能を提供しているのは一部のクラウドプロバイダだけです。実行しているクラウドプロバイダによっては、以下のように異なる方法でリクエストを満たす場合があります。
クライアントとのコネクションをプロキシーが終端し、ノードやエンドポイントとの接続には新しいコネクションが開かれる。このような場合、送信元IPは常にクラウドのロードバランサーのものになり、クライアントのIPにはなりません。
クライアントからロードバランサーのVIPに送信されたリクエストが、中間のプロキシーではなく、クライアントの送信元IPとともにノードまで到達するようなパケット転送が使用される。
1つめのカテゴリーのロードバランサーの場合、真のクライアントIPと通信するために、 HTTPのForwarded ヘッダーやX-FORWARDED-FOR ヘッダー、proxy protocol などの、ロードバランサーとバックエンドの間で合意されたプロトコルを使用する必要があります。2つ目のカテゴリーのロードバランサーの場合、Serviceのservice.spec.healthCheckNodePort
フィールドに保存されたポートを指すHTTPのヘルスチェックを作成することで、上記の機能を活用できます。
クリーンアップ
Serviceを削除します。
kubectl delete svc -l app = source-ip-app
Deployment、ReplicaSet、Podを削除します。
kubectl delete deployment source-ip-app
次の項目