ノードのトポロジー管理ポリシーを制御する
Kubernetes v1.18 [beta]
近年、CPUやハードウェア・アクセラレーターの組み合わせによって、レイテンシーが致命的となる実行や高いスループットを求められる並列計算をサポートするシステムが増えています。このようなシステムには、通信、科学技術計算、機械学習、金融サービス、データ分析などの分野のワークロードが含まれます。このようなハイブリッドシステムは、高い性能の環境で構成されます。
最高のパフォーマンスを引き出すために、CPUの分離やメモリーおよびデバイスの位置に関する最適化が求められます。しかしながら、Kubernetesでは、これらの最適化は分断されたコンポーネントによって処理されます。
トポロジーマネージャー はKubeletコンポーネントの1つで最適化の役割を担い、コンポーネント群を調和して機能させます。
始める前に
Kubernetesクラスターが必要、かつそのクラスターと通信するためにkubectlコマンドラインツールが設定されている必要があります。 このチュートリアルは、コントロールプレーンのホストとして動作していない少なくとも2つのノードを持つクラスターで実行することをおすすめします。 まだクラスターがない場合、minikubeを使って作成するか、 以下のいずれかのKubernetesプレイグラウンドも使用できます:
作業するKubernetesサーバーは次のバージョン以降のものである必要があります: v1.18. バージョンを確認するには次のコマンドを実行してください:kubectl version
.
トポロジーマネージャーはどのように機能するか
トポロジーマネージャー導入前は、KubernetesにおいてCPUマネージャーやデバイスマネージャーはそれぞれ独立してリソースの割り当てを決定します。 これは、マルチソケットのシステムでは望ましくない割り当てとなり、パフォーマンスやレイテンシーが求められるアプリケーションは、この望ましくない割り当てに悩まされます。 この場合の望ましくない例として、CPUやデバイスが異なるNUMAノードに割り当てられ、それによりレイテンシー悪化を招くことが挙げられます。
トポロジーマネージャーはKubeletコンポーネントであり、信頼できる情報源として振舞います。それによって、他のKubeletコンポーネントはトポロジーに沿ったリソース割り当ての選択を行うことができます。
トポロジーマネージャーは Hint Providers と呼ばれるコンポーネントのインターフェースを提供し、トポロジー情報を送受信します。トポロジーマネージャーは、ノード単位のポリシー群を保持します。ポリシーについて以下で説明します。
トポロジーマネージャーは Hint Providers からトポロジー情報を受け取ります。トポロジー情報は、利用可能なNUMAノードと優先割り当て表示を示すビットマスクです。トポロジーマネージャーのポリシーは、提供されたヒントに対して一連の操作を行い、ポリシーに沿ってヒントをまとめて最適な結果を得ます。もし、望ましくないヒントが保存された場合、ヒントの優先フィールドがfalseに設定されます。現在のポリシーでは、最も狭い優先マスクが優先されます。
選択されたヒントはトポロジーマネージャーの一部として保存されます。設定されたポリシーにしたがい、選択されたヒントに基づいてノードがPodを許可したり、拒否することができます。 トポロジーマネージャーに保存されたヒントは、Hint Providers が使用しリソース割り当てを決定します。
トポロジーマネージャーの機能を有効にする
トポロジーマネージャーをサポートするには、TopologyManager
フィーチャーゲートを有効にする必要があります。Kubernetes 1.18ではデフォルトで有効です。
トポロジーマネージャーのスコープとポリシー
トポロジーマネージャは現在:
- 全てのQoAクラスのPodを調整する
- Hint Providerによって提供されたトポロジーヒントから、要求されたリソースを調整する
これらの条件が合致した場合、トポロジーマネージャーは要求されたリソースを調整します。
この調整をどのように実行するかカスタマイズするために、トポロジーマネージャーは2つのノブを提供します: スコープ
とポリシー
です。
スコープ
はリソースの配置を行う粒度を定義します(例:pod
やcontainer
)。そして、ポリシー
は調整を実行するための実戦略を定義します(best-effort
, restricted
, single-numa-node
等)。
現在利用可能なスコープ
とポリシー
の値について詳細は以下の通りです。
トポロジーマネージャーのスコープ
トポロジーマネージャーは、以下の複数の異なるスコープでリソースの調整を行う事が可能です:
container
(デフォルト)pod
いずれのオプションも、--topology-manager-scope
フラグによって、kubelet起動時に選択できます。
containerスコープ
container
スコープはデフォルトで使用されます。
このスコープでは、トポロジーマネージャーは連続した複数のリソース調整を実行します。つまり、Pod内の各コンテナは、分離された配置計算がされます。言い換えると、このスコープでは、コンテナを特定のNUMAノードのセットにグループ化するという概念はありません。実際には、トポロジーマネージャーは各コンテナのNUMAノードへの配置を任意に実行します。
コンテナをグループ化するという概念は、以下のスコープで設定・実行されます。例えば、pod
スコープが挙げられます。
podスコープ
pod
スコープを選択するには、コマンドラインで--topology-manager-scope=pod
オプションを指定してkubeletを起動します。
このスコープでは、Pod内全てのコンテナを共通のNUMAノードのセットにグループ化することができます。トポロジーマネージャーはPodをまとめて1つとして扱い、ポッド全体(全てのコンテナ)を単一のNUMAノードまたはNUMAノードの共通セットのいずれかに割り当てようとします。以下の例は、さまざまな場面でトポロジーマネージャーが実行する調整を示します:
- 全てのコンテナは、単一のNUMAノードに割り当てられます。
- 全てのコンテナは、共有されたNUMAノードのセットに割り当てられます。
Pod全体に要求される特定のリソースの総量は有効なリクエスト/リミットの式に従って計算されるため、この総量の値は以下の最大値となります。
- 全てのアプリケーションコンテナのリクエストの合計。
- リソースに対するinitコンテナのリクエストの最大値。
pod
スコープとsingle-numa-node
トポロジーマネージャーポリシーを併用することは、レイテンシーが重要なワークロードやIPCを行う高スループットのアプリケーションに対して特に有効です。両方のオプションを組み合わせることで、Pod内の全てのコンテナを単一のNUMAノードに配置できます。そのため、PodのNUMA間通信によるオーバーヘッドを排除することができます。
single-numa-node
ポリシーの場合、可能な割り当ての中に適切なNUMAノードのセットが存在する場合にのみ、Podが許可されます。上の例をもう一度考えてみましょう:
- 1つのNUMAノードのみを含むセット - Podが許可されます。
- 2つ以上のNUMAノードを含むセット - Podが拒否されます(1つのNUMAノードの代わりに、割り当てを満たすために2つ以上のNUMAノードが必要となるため)。
要約すると、トポロジーマネージャーはまずNUMAノードのセットを計算し、それをトポロジーマネージャーのポリシーと照合し、Podの拒否または許可を検証します。
トポロジーマネージャーのポリシー
トポロジーマネージャーは4つの調整ポリシーをサポートします。--topology-manager-policy
というKubeletフラグを通してポリシーを設定できます。
4つのサポートされるポリシーがあります:
none
(デフォルト)best-effort
restricted
single-numa-node
none ポリシー
これはデフォルトのポリシーで、トポロジーの調整を実行しません。
best-effort ポリシー
Pod内の各コンテナに対して、best-effort
トポロジー管理ポリシーが設定されたkubeletは、各Hint Providerを呼び出してそれらのリソースの可用性を検出します。
トポロジーマネージャーはこの情報を使用し、そのコンテナの推奨されるNUMAノードのアフィニティーを保存します。アフィニティーが優先されない場合、トポロジーマネージャーはこれを保存し、Podをノードに許可します。
Hint Providers はこの情報を使ってリソースの割り当てを決定します。
restricted ポリシー
Pod内の各コンテナに対して、restricted
トポロジー管理ポリシーが設定されたkubeletは各Hint Providerを呼び出してそれらのリソースの可用性を検出します。
トポロジーマネージャーはこの情報を使用し、そのコンテナの推奨されるNUMAノードのアフィニティーを保存します。アフィニティーが優先されない場合、トポロジーマネージャーはPodをそのノードに割り当てることを拒否します。この結果、PodはPodの受付失敗となりTerminated
状態になります。
Podが一度Terminated
状態になると、KubernetesスケジューラーはPodの再スケジューリングを試み ません 。Podの再デプロイをするためには、ReplicasetかDeploymenを使用してください。Topology Affinity
エラーとなったpodを再デプロイするために、外部のコントロールループを実行することも可能です。
Podが許可されれば、 Hint Providers はこの情報を使ってリソースの割り当てを決定します。
single-numa-node ポリシー
Pod内の各コンテナに対して、single-numa-node
トポロジー管理ポリシーが設定されたkubeletは各Hint Prociderを呼び出してそれらのリソースの可用性を検出します。
トポロジーマネージャーはこの情報を使用し、単一のNUMAノードアフィニティが可能かどうか決定します。
可能な場合、トポロジーマネージャーは、この情報を保存し、Hint Providers はこの情報を使ってリソースの割り当てを決定します。
不可能な場合、トポロジーマネージャーは、Podをそのノードに割り当てることを拒否します。この結果、Pod は Pod の受付失敗となりTerminated
状態になります。
Podが一度Terminated
状態になると、KubernetesスケジューラーはPodの再スケジューリングを試みません。Podの再デプロイをするためには、ReplicasetかDeploymentを使用してください。Topology Affinity
エラーとなったpodを再デプロイするために、外部のコントロールループを実行することも可能です。
Podとトポロジー管理ポリシーの関係
以下のようなpodのSpecで定義されるコンテナを考えます:
spec:
containers:
- name: nginx
image: nginx
requests
もlimits
も定義されていないため、このPodはBestEffort
QoSクラスで実行します。
spec:
containers:
- name: nginx
image: nginx
resources:
limits:
memory: "200Mi"
requests:
memory: "100Mi"
requestsがlimitsより小さい値のため、このPodはBurstable
QoSクラスで実行します。
選択されたポリシーがnone
以外の場合、トポロジーマネージャーは、これらのPodのSpecを考慮します。トポロジーマネージャーは、Hint Providersからトポロジーヒントを取得します。CPUマネージャーポリシーがstatic
の場合、デフォルトのトポロジーヒントを返却します。これらのPodは明示的にCPUリソースを要求していないからです。
spec:
containers:
- name: nginx
image: nginx
resources:
limits:
memory: "200Mi"
cpu: "2"
example.com/device: "1"
requests:
memory: "200Mi"
cpu: "2"
example.com/device: "1"
整数値でCPUリクエストを指定されたこのPodは、requests
がlimits
が同じ値のため、Guaranteed
QoSクラスで実行します。
spec:
containers:
- name: nginx
image: nginx
resources:
limits:
memory: "200Mi"
cpu: "300m"
example.com/device: "1"
requests:
memory: "200Mi"
cpu: "300m"
example.com/device: "1"
CPUの一部をリクエストで指定されたこのPodは、requests
がlimits
が同じ値のため、Guaranteed
QoSクラスで実行します。
spec:
containers:
- name: nginx
image: nginx
resources:
limits:
example.com/deviceA: "1"
example.com/deviceB: "1"
requests:
example.com/deviceA: "1"
example.com/deviceB: "1"
CPUもメモリもリクエスト値がないため、このPodは BestEffort
QoSクラスで実行します。
トポロジーマネージャーは、上記Podを考慮します。トポロジーマネージャーは、Hint ProvidersとなるCPUマネージャーとデバイスマネージャーに問い合わせ、トポロジーヒントを取得します。
整数値でCPU要求を指定されたGuaranteed
QoSクラスのPodの場合、static
が設定されたCPUマネージャーポリシーは、排他的なCPUに関するトポロジーヒントを返却し、デバイスマネージャーは要求されたデバイスのヒントを返します。
CPUの一部を要求を指定されたGuaranteed
QoSクラスのPodの場合、排他的ではないCPU要求のためstatic
が設定されたCPUマネージャーポリシーはデフォルトのトポロジーヒントを返却します。デバイスマネージャーは要求されたデバイスのヒントを返します。
上記のGuaranteed
QoSクラスのPodに関する2ケースでは、none
で設定されたCPUマネージャーポリシーは、デフォルトのトポロジーヒントを返却します。
BestEffort
QoSクラスのPodの場合、static
が設定されたCPUマネージャーポリシーは、CPUの要求がないためデフォルトのトポロジーヒントを返却します。デバイスマネージャーは要求されたデバイスごとのヒントを返します。
トポロジーマネージャーはこの情報を使用してPodに最適なヒントを計算し保存します。保存されたヒントは Hint Providersが使用しリソースを割り当てます。
既知の制限
-
トポロジーマネージャーが許容するNUMAノードの最大値は8です。8より多いNUMAノードでは、可能なNUMAアフィニティを列挙しヒントを生成する際に、生成する状態数が爆発的に増加します。
-
スケジューラーはトポロジーを意識しません。そのため、ノードにスケジュールされた後に実行に失敗する可能性があります。