This the multi-page printable view of this section. Click here to print.
Stateless Applications
- 1: Exposing an External IP Address to Access an Application in a Cluster
- 2: Example: Deploying PHP Guestbook application with Redis
1 - Exposing an External IP Address to Access an Application in a Cluster
This page shows how to create a Kubernetes Service object that exposes an external IP address.
Before you begin
- Install kubectl.
- Use a cloud provider like Google Kubernetes Engine or Amazon Web Services to create a Kubernetes cluster. This tutorial creates an external load balancer, which requires a cloud provider.
- Configure
kubectl
to communicate with your Kubernetes API server. For instructions, see the documentation for your cloud provider.
Objectives
- Run five instances of a Hello World application.
- Create a Service object that exposes an external IP address.
- Use the Service object to access the running application.
Creating a service for an application running in five pods
-
Run a Hello World application in your cluster:
apiVersion: apps/v1 kind: Deployment metadata: labels: app.kubernetes.io/name: load-balancer-example name: hello-world spec: replicas: 5 selector: matchLabels: app.kubernetes.io/name: load-balancer-example template: metadata: labels: app.kubernetes.io/name: load-balancer-example spec: containers: - image: gcr.io/google-samples/node-hello:1.0 name: hello-world ports: - containerPort: 8080
kubectl apply -f https://k8s.io/examples/service/load-balancer-example.yaml
The preceding command creates a Deployment and an associated ReplicaSet. The ReplicaSet has five Pods each of which runs the Hello World application.
-
Display information about the Deployment:
kubectl get deployments hello-world kubectl describe deployments hello-world
-
Display information about your ReplicaSet objects:
kubectl get replicasets kubectl describe replicasets
-
Create a Service object that exposes the deployment:
kubectl expose deployment hello-world --type=LoadBalancer --name=my-service
-
Display information about the Service:
kubectl get services my-service
The output is similar to:
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE my-service LoadBalancer 10.3.245.137 104.198.205.71 8080/TCP 54s
Note: Thetype=LoadBalancer
service is backed by external cloud providers, which is not covered in this example, please refer to this page for the details.Note: If the external IP address is shown as <pending>, wait for a minute and enter the same command again. -
Display detailed information about the Service:
kubectl describe services my-service
The output is similar to:
Name: my-service Namespace: default Labels: app.kubernetes.io/name=load-balancer-example Annotations: <none> Selector: app.kubernetes.io/name=load-balancer-example Type: LoadBalancer IP: 10.3.245.137 LoadBalancer Ingress: 104.198.205.71 Port: <unset> 8080/TCP NodePort: <unset> 32377/TCP Endpoints: 10.0.0.6:8080,10.0.1.6:8080,10.0.1.7:8080 + 2 more... Session Affinity: None Events: <none>
Make a note of the external IP address (
LoadBalancer Ingress
) exposed by your service. In this example, the external IP address is 104.198.205.71. Also note the value ofPort
andNodePort
. In this example, thePort
is 8080 and theNodePort
is 32377. -
In the preceding output, you can see that the service has several endpoints: 10.0.0.6:8080,10.0.1.6:8080,10.0.1.7:8080 + 2 more. These are internal addresses of the pods that are running the Hello World application. To verify these are pod addresses, enter this command:
kubectl get pods --output=wide
The output is similar to:
NAME ... IP NODE hello-world-2895499144-1jaz9 ... 10.0.1.6 gke-cluster-1-default-pool-e0b8d269-1afc hello-world-2895499144-2e5uh ... 10.0.1.8 gke-cluster-1-default-pool-e0b8d269-1afc hello-world-2895499144-9m4h1 ... 10.0.0.6 gke-cluster-1-default-pool-e0b8d269-5v7a hello-world-2895499144-o4z13 ... 10.0.1.7 gke-cluster-1-default-pool-e0b8d269-1afc hello-world-2895499144-segjf ... 10.0.2.5 gke-cluster-1-default-pool-e0b8d269-cpuc
-
Use the external IP address (
LoadBalancer Ingress
) to access the Hello World application:curl http://<external-ip>:<port>
where
<external-ip>
is the external IP address (LoadBalancer Ingress
) of your Service, and<port>
is the value ofPort
in your Service description. If you are using minikube, typingminikube service my-service
will automatically open the Hello World application in a browser.The response to a successful request is a hello message:
Hello Kubernetes!
Cleaning up
To delete the Service, enter this command:
kubectl delete services my-service
To delete the Deployment, the ReplicaSet, and the Pods that are running the Hello World application, enter this command:
kubectl delete deployment hello-world
What's next
Learn more about connecting applications with services.
2 - Example: Deploying PHP Guestbook application with Redis
This tutorial shows you how to build and deploy a simple (not production ready), multi-tier web application using Kubernetes and Docker. This example consists of the following components:
- A single-instance Redis to store guestbook entries
- Multiple web frontend instances
Objectives
- Start up a Redis leader.
- Start up two Redis followers.
- Start up the guestbook frontend.
- Expose and view the Frontend Service.
- Clean up.
Before you begin
You need to have a Kubernetes cluster, and the kubectl command-line tool must be configured to communicate with your cluster. It is recommended to run this tutorial on a cluster with at least two nodes that are not acting as control plane hosts. If you do not already have a cluster, you can create one by using minikube or you can use one of these Kubernetes playgrounds:
Your Kubernetes server must be at or later than version v1.14. To check the version, enterkubectl version
.
Start up the Redis Database
The guestbook application uses Redis to store its data.
Creating the Redis Deployment
The manifest file, included below, specifies a Deployment controller that runs a single replica Redis Pod.
# SOURCE: https://cloud.google.com/kubernetes-engine/docs/tutorials/guestbook
apiVersion: apps/v1
kind: Deployment
metadata:
name: redis-leader
labels:
app: redis
role: leader
tier: backend
spec:
replicas: 1
selector:
matchLabels:
app: redis
template:
metadata:
labels:
app: redis
role: leader
tier: backend
spec:
containers:
- name: leader
image: "docker.io/redis:6.0.5"
resources:
requests:
cpu: 100m
memory: 100Mi
ports:
- containerPort: 6379
-
Launch a terminal window in the directory you downloaded the manifest files.
-
Apply the Redis Deployment from the
redis-leader-deployment.yaml
file:kubectl apply -f https://k8s.io/examples/application/guestbook/redis-leader-deployment.yaml
-
Query the list of Pods to verify that the Redis Pod is running:
kubectl get pods
The response should be similar to this:
NAME READY STATUS RESTARTS AGE redis-leader-fb76b4755-xjr2n 1/1 Running 0 13s
-
Run the following command to view the logs from the Redis leader Pod:
kubectl logs -f deployment/redis-leader
Creating the Redis leader Service
The guestbook application needs to communicate to the Redis to write its data. You need to apply a Service to proxy the traffic to the Redis Pod. A Service defines a policy to access the Pods.
# SOURCE: https://cloud.google.com/kubernetes-engine/docs/tutorials/guestbook
apiVersion: v1
kind: Service
metadata:
name: redis-leader
labels:
app: redis
role: leader
tier: backend
spec:
ports:
- port: 6379
targetPort: 6379
selector:
app: redis
role: leader
tier: backend
-
Apply the Redis Service from the following
redis-leader-service.yaml
file:kubectl apply -f https://k8s.io/examples/application/guestbook/redis-leader-service.yaml
-
Query the list of Services to verify that the Redis Service is running:
kubectl get service
The response should be similar to this:
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE kubernetes ClusterIP 10.0.0.1 <none> 443/TCP 1m redis-leader ClusterIP 10.103.78.24 <none> 6379/TCP 16s
redis-leader
with a set of labels
that match the labels previously defined, so the Service routes network
traffic to the Redis Pod.
Set up Redis followers
Although the Redis leader is a single Pod, you can make it highly available and meet traffic demands by adding a few Redis followers, or replicas.
# SOURCE: https://cloud.google.com/kubernetes-engine/docs/tutorials/guestbook
apiVersion: apps/v1
kind: Deployment
metadata:
name: redis-follower
labels:
app: redis
role: follower
tier: backend
spec:
replicas: 2
selector:
matchLabels:
app: redis
template:
metadata:
labels:
app: redis
role: follower
tier: backend
spec:
containers:
- name: follower
image: gcr.io/google_samples/gb-redis-follower:v2
resources:
requests:
cpu: 100m
memory: 100Mi
ports:
- containerPort: 6379
-
Apply the Redis Deployment from the following
redis-follower-deployment.yaml
file:kubectl apply -f https://k8s.io/examples/application/guestbook/redis-follower-deployment.yaml
-
Verify that the two Redis follower replicas are running by querying the list of Pods:
kubectl get pods
The response should be similar to this:
NAME READY STATUS RESTARTS AGE redis-follower-dddfbdcc9-82sfr 1/1 Running 0 37s redis-follower-dddfbdcc9-qrt5k 1/1 Running 0 38s redis-leader-fb76b4755-xjr2n 1/1 Running 0 11m
Creating the Redis follower service
The guestbook application needs to communicate with the Redis followers to read data. To make the Redis followers discoverable, you must set up another Service.
# SOURCE: https://cloud.google.com/kubernetes-engine/docs/tutorials/guestbook
apiVersion: v1
kind: Service
metadata:
name: redis-follower
labels:
app: redis
role: follower
tier: backend
spec:
ports:
# the port that this service should serve on
- port: 6379
selector:
app: redis
role: follower
tier: backend
-
Apply the Redis Service from the following
redis-follower-service.yaml
file:kubectl apply -f https://k8s.io/examples/application/guestbook/redis-follower-service.yaml
-
Query the list of Services to verify that the Redis Service is running:
kubectl get service
The response should be similar to this:
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 3d19h redis-follower ClusterIP 10.110.162.42 <none> 6379/TCP 9s redis-leader ClusterIP 10.103.78.24 <none> 6379/TCP 6m10s
redis-follower
with a set of
labels that match the labels previously defined, so the Service routes network
traffic to the Redis Pod.
Set up and Expose the Guestbook Frontend
Now that you have the Redis storage of your guestbook up and running, start the guestbook web servers. Like the Redis followers, the frontend is deployed using a Kubernetes Deployment.
The guestbook app uses a PHP frontend. It is configured to communicate with either the Redis follower or leader Services, depending on whether the request is a read or a write. The frontend exposes a JSON interface, and serves a jQuery-Ajax-based UX.
Creating the Guestbook Frontend Deployment
# SOURCE: https://cloud.google.com/kubernetes-engine/docs/tutorials/guestbook
apiVersion: apps/v1
kind: Deployment
metadata:
name: frontend
spec:
replicas: 3
selector:
matchLabels:
app: guestbook
tier: frontend
template:
metadata:
labels:
app: guestbook
tier: frontend
spec:
containers:
- name: php-redis
image: gcr.io/google_samples/gb-frontend:v5
env:
- name: GET_HOSTS_FROM
value: "dns"
resources:
requests:
cpu: 100m
memory: 100Mi
ports:
- containerPort: 80
-
Apply the frontend Deployment from the
frontend-deployment.yaml
file:kubectl apply -f https://k8s.io/examples/application/guestbook/frontend-deployment.yaml
-
Query the list of Pods to verify that the three frontend replicas are running:
kubectl get pods -l app=guestbook -l tier=frontend
The response should be similar to this:
NAME READY STATUS RESTARTS AGE frontend-85595f5bf9-5tqhb 1/1 Running 0 47s frontend-85595f5bf9-qbzwm 1/1 Running 0 47s frontend-85595f5bf9-zchwc 1/1 Running 0 47s
Creating the Frontend Service
The Redis
Services you applied is only accessible within the Kubernetes
cluster because the default type for a Service is
ClusterIP.
ClusterIP
provides a single IP address for the set of Pods the Service is
pointing to. This IP address is accessible only within the cluster.
If you want guests to be able to access your guestbook, you must configure the
frontend Service to be externally visible, so a client can request the Service
from outside the Kubernetes cluster. However a Kubernetes user can use
kubectl port-forward
to access the service even though it uses a
ClusterIP
.
type: LoadBalancer
.
# SOURCE: https://cloud.google.com/kubernetes-engine/docs/tutorials/guestbook
apiVersion: v1
kind: Service
metadata:
name: frontend
labels:
app: guestbook
tier: frontend
spec:
# if your cluster supports it, uncomment the following to automatically create
# an external load-balanced IP for the frontend service.
# type: LoadBalancer
#type: LoadBalancer
ports:
# the port that this service should serve on
- port: 80
selector:
app: guestbook
tier: frontend
-
Apply the frontend Service from the
frontend-service.yaml
file:kubectl apply -f https://k8s.io/examples/application/guestbook/frontend-service.yaml
-
Query the list of Services to verify that the frontend Service is running:
kubectl get services
The response should be similar to this:
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE frontend ClusterIP 10.97.28.230 <none> 80/TCP 19s kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 3d19h redis-follower ClusterIP 10.110.162.42 <none> 6379/TCP 5m48s redis-leader ClusterIP 10.103.78.24 <none> 6379/TCP 11m
Viewing the Frontend Service via kubectl port-forward
-
Run the following command to forward port
8080
on your local machine to port80
on the service.kubectl port-forward svc/frontend 8080:80
The response should be similar to this:
Forwarding from 127.0.0.1:8080 -> 80 Forwarding from [::1]:8080 -> 80
-
load the page http://localhost:8080 in your browser to view your guestbook.
Viewing the Frontend Service via LoadBalancer
If you deployed the frontend-service.yaml
manifest with type: LoadBalancer
you need to find the IP address to view your Guestbook.
-
Run the following command to get the IP address for the frontend Service.
kubectl get service frontend
The response should be similar to this:
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE frontend LoadBalancer 10.51.242.136 109.197.92.229 80:32372/TCP 1m
-
Copy the external IP address, and load the page in your browser to view your guestbook.
Scale the Web Frontend
You can scale up or down as needed because your servers are defined as a Service that uses a Deployment controller.
-
Run the following command to scale up the number of frontend Pods:
kubectl scale deployment frontend --replicas=5
-
Query the list of Pods to verify the number of frontend Pods running:
kubectl get pods
The response should look similar to this:
NAME READY STATUS RESTARTS AGE frontend-85595f5bf9-5df5m 1/1 Running 0 83s frontend-85595f5bf9-7zmg5 1/1 Running 0 83s frontend-85595f5bf9-cpskg 1/1 Running 0 15m frontend-85595f5bf9-l2l54 1/1 Running 0 14m frontend-85595f5bf9-l9c8z 1/1 Running 0 14m redis-follower-dddfbdcc9-82sfr 1/1 Running 0 97m redis-follower-dddfbdcc9-qrt5k 1/1 Running 0 97m redis-leader-fb76b4755-xjr2n 1/1 Running 0 108m
-
Run the following command to scale down the number of frontend Pods:
kubectl scale deployment frontend --replicas=2
-
Query the list of Pods to verify the number of frontend Pods running:
kubectl get pods
The response should look similar to this:
NAME READY STATUS RESTARTS AGE frontend-85595f5bf9-cpskg 1/1 Running 0 16m frontend-85595f5bf9-l9c8z 1/1 Running 0 15m redis-follower-dddfbdcc9-82sfr 1/1 Running 0 98m redis-follower-dddfbdcc9-qrt5k 1/1 Running 0 98m redis-leader-fb76b4755-xjr2n 1/1 Running 0 109m
Cleaning up
Deleting the Deployments and Services also deletes any running Pods. Use labels to delete multiple resources with one command.
-
Run the following commands to delete all Pods, Deployments, and Services.
kubectl delete deployment -l app=redis kubectl delete service -l app=redis kubectl delete deployment frontend kubectl delete service frontend
The response should look similar to this:
deployment.apps "redis-follower" deleted deployment.apps "redis-leader" deleted deployment.apps "frontend" deleted service "frontend" deleted
-
Query the list of Pods to verify that no Pods are running:
kubectl get pods
The response should look similar to this:
No resources found in default namespace.
What's next
- Complete the Kubernetes Basics Interactive Tutorials
- Use Kubernetes to create a blog using Persistent Volumes for MySQL and Wordpress
- Read more about connecting applications
- Read more about Managing Resources